<--- Back to Details
First PageDocument Content
Cartographic projections / Geodesy / Conformal mapping / Geocodes / GRIB / Latitude / Map projection / Stereographic projection / Transverse Mercator projection / Geometry / Cartography / Mathematical analysis
Date: 2007-05-10 13:19:26
Cartographic projections
Geodesy
Conformal mapping
Geocodes
GRIB
Latitude
Map projection
Stereographic projection
Transverse Mercator projection
Geometry
Cartography
Mathematical analysis

Add to Reading List

Source URL: www.wmo.int

Download Document from Source Website

File Size: 196,00 KB

Share Document on Facebook

Similar Documents

Mathematics / Graph theory / Mathematical analysis / Conformal mapping / Projective geometry / Planar graph / Riemann surfaces / Complex analysis / Operator theory / Differential geometry of surfaces / Stereographic projection / Brouwer fixed-point theorem

Spectral Graph Theory Lecture 20 The Second Eigenvalue of Planar Graphs Daniel A. Spielman

DocID: 1r9rk - View Document

Geometry / Geodesy / Space / Ellipsoid / Map projection / Triaxial / Latitude / Thorn / Differential geometry of surfaces / Conformal map / Three-dimensional space

Jacobi Conformal Projection of the Triaxial Ellipsoid: New Projection for Mapping of Small Celestial Bodies Maxim V. Nyrtsov, Maria E. Fleis, Michael M. Borisov and Philip J. Stooke

DocID: 1qOSu - View Document

Mathematics / Mathematical analysis / Geometry / Conformal mapping / Projective geometry / Riemann surfaces / Planar graphs / Complex analysis / Differential geometry of surfaces / Constructible universe / Brouwer fixed-point theorem / Stereographic projection

Spectral Graph Theory and its Applications September 16, 2004 Lecture 5 Lecturer: Daniel A. Spielman

DocID: 1q2vH - View Document

Moduli theory / Riemann surfaces / Differential geometry / Geometric topology / Quantum field theory / Moduli space / Mapping class group / Conformal geometry / Moduli / Teichmller space / Moduli stack of formal group laws

Moduli Spaces Two Riemann surfaces of the same topological type can, of course, be conformally inequivalent; but how many conformal structures are there, and how can one deform them ? Take for example an annulus A(r, R)

DocID: 1pKbH - View Document

Riemann surfaces / Complex analysis / Conformal mapping / Differential geometry / Symbol / Table of stars with Bayer designations

doi:ipiInverse Problems and Imaging Volume 5, No. 2, 2011, 485–510 RECOVERING CONDUCTIVITY AT THE BOUNDARY IN

DocID: 1pjsU - View Document