<--- Back to Details
First PageDocument Content
Elementary mathematics / Cardinal numbers / Boolean algebra / Mathematical optimization / Integer / Finite set / NP / Cardinality / Boolean satisfiability problem / Mathematics / Theoretical computer science / Complexity classes
Date: 2010-02-08 11:12:45
Elementary mathematics
Cardinal numbers
Boolean algebra
Mathematical optimization
Integer
Finite set
NP
Cardinality
Boolean satisfiability problem
Mathematics
Theoretical computer science
Complexity classes

On Decision Procedures for Ordered Collections

Add to Reading List

Source URL: lara.epfl.ch

Download Document from Source Website

File Size: 208,18 KB

Share Document on Facebook

Similar Documents

Algebra Universalis, + 0.20/0 (~ 1995 BirkhS.user Verlag, Basel Adjoining units to residuated Boolean algebras

DocID: 1v8wA - View Document

American Computer Science League Flyer Solutions 1. Boolean Algebra ( A  B) ( AB  BC ) = A B ( AB  BC ) = AA B  A BB C  0  0  0

DocID: 1uZJ8 - View Document

Visualising the Boolean Algebra IB4 in 3D Hans Smessaert & Lorenz Demey KU Leuven, Belgium Rhombic Dodecahedron (RDH) LOGICAL GEOMETRY

DocID: 1up5i - View Document

BOO axioms BOO001-0.ax Ternary Boolean algebra (equality) axioms m(m(v, w, x), y, m(v, w, z)) = m(v, w, m(x, y, z)) cnf(associativity, axiom) m(y, x, x) = x cnf(ternary multiply1 , axiom)

DocID: 1u9q0 - View Document

Theoretical computer science / Mathematics / Computational complexity theory / Operations research / Logic in computer science / Mathematical optimization / NP-complete problems / Boolean algebra / Maximum satisfiability problem / Boolean satisfiability problem / Constraint satisfaction / Solver

On Solving Boolean Multilevel Optimization Problems∗ Josep Argelich INESC-ID Lisbon

DocID: 1rsZm - View Document