<--- Back to Details
First PageDocument Content
Kissing number problem / Kepler conjecture / Icosahedron / Sphere packing / Bartel Leendert van der Waerden / Regular polytope / Sphere / Günter M. Ziegler / Proofs from THE BOOK / Geometry / Mathematics / Discrete geometry
Date: 2004-08-10 14:36:22
Kissing number problem
Kepler conjecture
Icosahedron
Sphere packing
Bartel Leendert van der Waerden
Regular polytope
Sphere
Günter M. Ziegler
Proofs from THE BOOK
Geometry
Mathematics
Discrete geometry

The Difficulties of Kissing in Three Dimensions Bill Casselman

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 44,62 KB

Share Document on Facebook

Similar Documents

Spheres / Discrete geometry / Packing problems / Crystallography / Sphere packing / Differential topology / Close-packing of equal spheres / Kissing number problem / 3-sphere / Kepler conjecture / Sphere / Celestial spheres

A reprint from American Scientist the magazine of Sigma Xi, The Scientific Research Society

DocID: 1pAhS - View Document

Spheres / Crystallography / Elementary geometry / Packaging / Packing problem / Sphere packing / Sphere / Kissing number problem / N-sphere / Geometry / Mathematics / Discrete geometry

JOURNAL OF MATHEMATICAL PHYSICS 51, 043302 共2010兲 Spherical codes, maximal local packing density, and the golden ratio Adam B. Hopkins,1 Frank H. Stillinger,1 and Salvatore Torquato1,2,3,4,a兲 1

DocID: 18QyW - View Document

Sphere packing / Packing problem / Kissing number problem / Relaxation / Discrete geometry / Mathematics / Geometry

PHYSICAL REVIEW E 73, 031106 共2006兲 Exactly solvable disordered sphere-packing model in arbitrary-dimensional Euclidean spaces S. Torquato* Department of Chemistry, Princeton University, Princeton, New Jersey 08544,

DocID: 18Pqp - View Document

Crystallography / Spheres / Sphere packing / Packing problem / Close-packing of equal spheres / Kepler conjecture / Sphere / Kissing number problem / N-sphere / Geometry / Discrete geometry / Mathematics

PHYSICAL REVIEW E 81, 041305 共2010兲 Densest local sphere-packing diversity: General concepts and application to two dimensions Adam B. Hopkins and Frank H. Stillinger Department of Chemistry, Princeton University, P

DocID: 18Ob0 - View Document

Spheres / Crystallography / Sphere packing / Packing problem / Close-packing of equal spheres / Spherical code / Sphere / Kissing number problem / N-sphere / Geometry / Mathematics / Discrete geometry

PHYSICAL REVIEW E 83, Densest local sphere-packing diversity. II. Application to three dimensions Adam B. Hopkins and Frank H. Stillinger Department of Chemistry, Princeton University, Princeton, New Jerse

DocID: 18q3V - View Document