<--- Back to Details
First PageDocument Content
Number theory / Fermat pseudoprime / Primality test / Probable prime / Prime number / Strong pseudoprime / Lucas pseudoprime / Pseudoprimes / Mathematics / Numbers
Date: 2012-09-10 12:34:27
Number theory
Fermat pseudoprime
Primality test
Probable prime
Prime number
Strong pseudoprime
Lucas pseudoprime
Pseudoprimes
Mathematics
Numbers

Preliminary thoughts Primality tests

Add to Reading List

Source URL: www.chalcedon.demon.co.uk

Download Document from Source Website

File Size: 542,25 KB

Share Document on Facebook

Similar Documents

Pseudoprimes / Mathematics / Number theory / Integer sequences / Discrete mathematics / Fermat pseudoprime / Carmichael number / MillerRabin primality test / Prime number / Primality test / Mersenne prime / Unique prime

Pseudoprimes and Carmichael Numbers Emily Riemer MATH0420 May 3,

DocID: 1mNn0 - View Document

Modular arithmetic / Carmichael number / Pseudoprimes / Prime number / Primality test / Coprime / Mathematics / Integer sequences / Number theory

PDF Document

DocID: Rg7b - View Document

Pseudoprimes / Modular arithmetic / Abstract algebra / Miller–Rabin primality test / Solovay–Strassen primality test / Probable prime / Fermat primality test / Prime number / Strong pseudoprime / Mathematics / Number theory / Primality tests

This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van Oorschot, and S. Vanstone, CRC Press, 1996. For further information, see www.cacr.math.uwaterloo.ca/hac CRC Press has granted the followi

DocID: Ra8O - View Document

Integer sequences / Lucas pseudoprime / Modular arithmetic / Recurrence relations / Derrick Henry Lehmer / Prime number / Lucas sequence / Lehmer / Primality test / Mathematics / Number theory / Pseudoprimes

PDF Document

DocID: QzU1 - View Document

[removed]Eric Kimball* ([removed]). Frobenius Pseudoprimes and a Cubic Primality Test. Preliminary report. An integer, n, is called a Frobenius probable prime with respect to a polynomial when it passes the F

DocID: NVNI - View Document