<--- Back to Details
First PageDocument Content
Probability and statistics / Statistical inference / M-estimators / Signal processing / Maximum likelihood / Normal distribution / Principle of maximum entropy / Estimator / Entropy / Statistics / Statistical theory / Estimation theory
Date: 2013-11-21 08:16:49
Probability and statistics
Statistical inference
M-estimators
Signal processing
Maximum likelihood
Normal distribution
Principle of maximum entropy
Estimator
Entropy
Statistics
Statistical theory
Estimation theory

cover-datafirst-saldru_latest.indd

Add to Reading List

Source URL: www.datafirst.uct.ac.za

Download Document from Source Website

File Size: 201,60 KB

Share Document on Facebook

Similar Documents

? Objective Bayesianism and the Maximum Entropy Principle ? Jürgen Landes and Jon Williamson Draft of September 3, 2013

DocID: 1uhJm - View Document

Military medicine / Statistical theory / Statistics / Walter Reed Biosystematics Unit / Walter Reed Army Institute of Research / Walter Reed / Principle of maximum entropy

Habitat suitability of the sand fly: Nyssomyia whitmani 60° W 55° W 50° W

DocID: 1rrRB - View Document

Statistical theory / Statistics / Walter Reed Biosystematics Unit / Walter Reed Army Institute of Research / Principle of maximum entropy

Habitat suitability of the mosquito: Culex tarsalis 115° W 110° W 105° W

DocID: 1rmXU - View Document

Military medicine / Statistical theory / Statistics / Walter Reed Biosystematics Unit / Walter Reed Army Institute of Research / Walter Reed / Principle of maximum entropy

Habitat suitability of the sand fly: Sciopemyia sordellii 60° W 55° W 50° W

DocID: 1rlKr - View Document

Statistics / Physics / Probability / Statistical theory / Thermodynamic entropy / Information theory / Philosophy of thermal and statistical physics / Randomness / Entropy / Principle of maximum entropy / KullbackLeibler divergence / Maximum entropy probability distribution

Entropy 2013, 15, ; doi:e15083209 OPEN ACCESS entropy ISSNwww.mdpi.com/journal/entropy

DocID: 1rhfy - View Document