<--- Back to Details
First PageDocument Content
Sheaf theory / Sheaf / Functor / Topos / Grothendieck topology / Presheaf / Initial and terminal objects / Adjoint functors / Zermelo–Fraenkel set theory / Category theory / Mathematics / Abstract algebra
Date: 2009-02-01 11:27:30
Sheaf theory
Sheaf
Functor
Topos
Grothendieck topology
Presheaf
Initial and terminal objects
Adjoint functors
Zermelo–Fraenkel set theory
Category theory
Mathematics
Abstract algebra

PRESHEAF MODELS FOR CONSTRUCTIVE SET THEORIES NICOLA GAMBINO

Add to Reading List

Source URL: www.math.unipa.it

Download Document from Source Website

File Size: 203,02 KB

Share Document on Facebook

Similar Documents

Las utopías literarias argentinas en el períodopor Carlos Abraham La utopía (nombre que proviene del término griego ou topos, que significa nolugar o lugar inexistente) es un género literario cuyo objetiv

DocID: 1uGO4 - View Document

Brit. J. Phil. Sci. 41 (I 9901, 3 5 IPrinted in Great Britain The Uses and Abuses of the History of Topos Theory ABSTRACT

DocID: 1urja - View Document

The Arts Ripple Effect: A Research-Based Strategy to Build Shared Responsibility for the Arts Produced by the Topos Partnership for the Fine Arts Fund Table of Contents

DocID: 1tcDY - View Document

What is … a topos? Z.L. Low 17 January 2013 Abstract The words ‘topos theory’ seem to strike unnecessary fear in the hearts of mathematicians. I shall try to defuse some of this apprehension by explaining what a to

DocID: 1t0u1 - View Document

Basic Category Theory and Topos Theory Jaap van Oosten Jaap van Oosten Department of Mathematics

DocID: 1sX43 - View Document