<--- Back to Details
First PageDocument Content
Dimension / Benoit Mandelbrot / Mandelbrot set / Fractal / Chaos theory / The Fractal Geometry of Nature / Financial modeling / Multifractal system / Power law / Fractals / Mathematics / Mathematical analysis
Date: 2006-02-03 10:42:12
Dimension
Benoit Mandelbrot
Mandelbrot set
Fractal
Chaos theory
The Fractal Geometry of Nature
Financial modeling
Multifractal system
Power law
Fractals
Mathematics
Mathematical analysis

Add to Reading List

Source URL: users.math.yale.edu

Download Document from Source Website

File Size: 87,32 KB

Share Document on Facebook

Similar Documents

Substitutions, Rauzy fractals and Tilings Anne Siegel CANT, 2009 Reminder....

DocID: 1vqsN - View Document

FRACTALS FOR ELECTRONIC APPLICATIONS Maciej J. Ogorzałek Department of Information Technologies Faculty of Physics, Astronomy and Applied Computer Science Jagiellonian University,

DocID: 1vmyF - View Document

International Workshop on Chaos­Fractals Theories and Applications 9th IWCFTA

DocID: 1uIyf - View Document

J. theor. Biol, 47}56 doi:jtbi, available online at http://www.idealibrary.com on Link between Truncated Fractals and Coupled Oscillators in Biological Systems V. PAAR*-, N. PAVIN*

DocID: 1ui2I - View Document

Chaos, Solitons and Fractals–309 www.elsevier.com/locate/chaos Construction of homoclinic and heteroclinic trajectories in mechanical systems with several equilibrium positions Yu.V. Mikhlin *, G.V. Manuc

DocID: 1ugLR - View Document