<--- Back to Details
First PageDocument Content
Partial differential equations / Fourier analysis / Harmonic analysis / Rotational symmetry / Spherical harmonics / Particle in a spherically symmetric potential / Mathematical analysis / Calculus / Mathematics
Date: 2005-11-18 18:00:45
Partial differential equations
Fourier analysis
Harmonic analysis
Rotational symmetry
Spherical harmonics
Particle in a spherically symmetric potential
Mathematical analysis
Calculus
Mathematics

Add to Reading List

Source URL: fe.math.kobe-u.ac.jp

Download Document from Source Website

File Size: 5,92 MB

Share Document on Facebook

Similar Documents

44. Clebsch-Gordan coefficientsClebsch-Gordan Coefficients, Spherical Harmonics, and d Functions p

DocID: 1v0t1 - View Document

On the Theory of the Second-Order Soundfield Microphone Philip Cotterell Appendix 1: Second-Order Derivatives & Spherical Harmonics - Additional Material

DocID: 1tLda - View Document

Algebra / Mathematics / Spectral theory / Linear algebra / Spectrum / Symbol / Wave function / Eigenvalues and eigenvectors / Spherical harmonics

Resonances In a Box George A. Hagedorn†§ Bernhard Meller‡¶ September 26, 1999

DocID: 1r3h8 - View Document

Mathematical analysis / Mathematics / Vector calculus / Potential theory / Electromagnetism / Partial differential equations / Rotational symmetry / Rotational diffusion / Vector spherical harmonics / Spherical harmonics / Dipole / Vector field

Supporting Information Drescher et alpnasSI Text Hydrodynamics vs. Noise in Cell–Cell Scattering. Guided by our ex- perimental results for Escherichia coli, we would like to estimate

DocID: 1qVeo - View Document

Mathematical analysis / Map projections / Mathematics / Partial differential equations / Atomic physics / Rotational symmetry / Mercator projection / Spherical harmonics

AtlasOfSphericalHarmonics.nb

DocID: 1qBXm - View Document