<--- Back to Details
First PageDocument Content
Theoretical computer science / Sudoku / Donald Knuth / Dancing Links / Exact cover / Polystick / Matrix / Symmetric matrix / Algorithm / Mathematics / Search algorithms / Recreational mathematics
Date: 2011-05-20 08:46:43
Theoretical computer science
Sudoku
Donald Knuth
Dancing Links
Exact cover
Polystick
Matrix
Symmetric matrix
Algorithm
Mathematics
Search algorithms
Recreational mathematics

Add to Reading List

Source URL: did.mat.uni-bayreuth.de

Download Document from Source Website

File Size: 151,71 KB

Share Document on Facebook

Similar Documents

Algebra / Linear algebra / Mathematics / Matrices / Symmetric matrix / Tridiagonal matrix / Numerical linear algebra / Lie groups / Differential geometry

Symmetric Indefinite Triangular Factorization Revealing the Rank Profile Matrix Jean-Guillaume Dumas, Cl´ement Pernet Universit´ e Grenoble Alpes, Laboratoire Jean Kuntzmann, UMR CNRS

DocID: 1xV4O - View Document

SYMMETRIC KRONECKER PRODUCTS AND SEMICLASSICAL WAVE PACKETS GEORGE A. HAGEDORN AND CAROLINE LASSER Abstract. We investigate the iterated Kronecker product of a square matrix with itself and prove an invariance property f

DocID: 1sfqQ - View Document

DATA COMPRESSION AND CRITICAL POINTS DETECTION USING NORMALIZED SYMMETRIC SCATTERED MATRIX Khagendra Thapa B.Sc. B.Sc(Hons) CNAA, M.Sc.E. M.S. Ph.D. Department of Surveying and MappingFenis State University Big Rapids, M

DocID: 1rAFN - View Document

Algebra / Linear algebra / Mathematics / Matrices / Matrix theory / Matrix / Determinant / Square matrix / Symmetric matrix / Hermitian matrix / Diagonalizable matrix / Integer matrix

9. Linear Algebra Po-Shen Loh CMU Putnam Seminar, Fall

DocID: 1rixu - View Document

Algebra / Mathematics / Linear algebra / Matrix theory / Spectral theory / Matrices / Homogeneous polynomials / Eigenvalues and eigenvectors / Matrix / Symmetric matrix / Spectrum / Determinant

Matrix polynomials and structured linearizations. Advisor: Maria Isabel Bueno Cachadina Let P (λ) = Ak λk + Ak−1 λk−1 + · · · + A0

DocID: 1rhAl - View Document