<--- Back to Details
First PageDocument Content
Taylor series / Poisson processes / Concentration inequality / Compound Poisson process / Mathematical analysis / Chernoff bound / Binomial distribution
Date: 2009-11-24 14:10:02
Taylor series
Poisson processes
Concentration inequality
Compound Poisson process
Mathematical analysis
Chernoff bound
Binomial distribution

CS174 Lecture 10 John Canny

Add to Reading List

Source URL: www.cs.princeton.edu

Download Document from Source Website

File Size: 34,53 KB

Share Document on Facebook

Similar Documents

Joseph H. Taylor, K1JT 272 Hartley Ave, Princeton, NJ 08540: High-Accuracy Prediction and Measurement of Lunar Echoes K1JT describes a series of recent lunar echo measurements at

DocID: 1v2oQ - View Document

MathQuest: Series Taylor Series 1. Find the Taylor series for the function ln(x) at the point a = 1. (a) (x − 1) − 21 (x − 1)2 + 31 (x − 1)3 − 41 (x − 1)4 + · · · (b) (x − 1) − (x − 1)2 + 2(x − 1)3

DocID: 1v1pb - View Document

Section 8.8 Taylor Series APEX C

DocID: 1tN3x - View Document

MACLAURIN AND TAYLOR SERIES 5 minute review. Recap the definitions of Maclaurin and Taylor series, drawing attention to the x − a in the definition of the Taylor series at the point x = a. P f (n) (0) n

DocID: 1tMkR - View Document

MAS152 Essential Mathematical Skills & Techniques Examples 3: Maclaurin and Taylor Series: L’Hˆ opital’s Rule

DocID: 1tLAN - View Document