<--- Back to Details
First PageDocument Content
Analytic geometry / Projective geometry / 3D computer graphics / Camera resectioning / Cartesian coordinate system / 3D projection / Pinhole camera model / Transformation matrix / Pose / Geometry / Computer vision / Transformation
Date: 2006-07-28 12:57:52
Analytic geometry
Projective geometry
3D computer graphics
Camera resectioning
Cartesian coordinate system
3D projection
Pinhole camera model
Transformation matrix
Pose
Geometry
Computer vision
Transformation

Add to Reading List

Source URL: www.vision.caltech.edu

Download Document from Source Website

File Size: 3,16 MB

Share Document on Facebook

Similar Documents

Mathematical physics / Matrices / Rotation matrix / Transformation / Modular forms

C:/Users/kaveh/Desktop/ACC Conference - Copy/ACC_Paper_v6.dvi

DocID: 1rqwv - View Document

Critical phenomena / Phase transitions / Statistics / Scaling / Transformation / Power law / Scale / Scalability / Critical exponent / Computing / Matrix / Physics

Spacetimes with semantics II (supplement)∗ On the scaling of functional spaces, from smart cities to cloud computing Mark Burgess

DocID: 1rce2 - View Document

Geodesy / Transformation / Measurement / Mathematics / Coordinate systems / Geometry / Helmert transformation / Orientation / Geographic coordinate systems / European Terrestrial Reference System / Rotation matrix / Cartesian coordinate system

Description of Transformation - UA_UCS-2000 to ETRS89 Attribute Entry UA_UCS-2000 to ETRS89 Operation identifier Operation identifier alias

DocID: 1r8BE - View Document

Algebra / Mathematics / Linear algebra / Operator theory / Matrix theory / Symbol / Eigenvalues and eigenvectors / FoldyWouthuysen transformation / Self-adjoint operator

331 Documenta Math. The Projected Single-Particle Dirac Operator for Coulombic Potentials

DocID: 1r0kk - View Document

Algebra / Mathematics / Linear algebra / Transformation / Matrices / Abstract algebra / Rotational symmetry / Rotation matrix / Matrix / Determinant / Linear map / Euclidean vector

Math 152: Linear Systems – WinterSection 3: Matrices and Determinants Matrix operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DocID: 1qYhX - View Document