<--- Back to Details
First PageDocument Content
Discrete mathematics / Randomness / Shuffling / Faro shuffle / Out shuffle / Eulerian number / Random permutation / Parity of a permutation / Mathematics / Combinatorics / Permutations
Date: 2014-05-28 23:53:37
Discrete mathematics
Randomness
Shuffling
Faro shuffle
Out shuffle
Eulerian number
Random permutation
Parity of a permutation
Mathematics
Combinatorics
Permutations

SMT[removed]Power Round

Add to Reading List

Source URL: sumo.stanford.edu

Download Document from Source Website

File Size: 131,71 KB

Share Document on Facebook

Similar Documents

ON THE NUMBER OF PLANAR EULERIAN ORIENTATIONS arXiv:1610.09837v1 [math.CO] 31 Oct 2016 NICOLAS BONICHON, MIREILLE BOUSQUET-MÉLOU, PAUL DORBEC, AND CLAIRE PENNARUN

DocID: 1sPOP - View Document

Integer sequences / Combinatorics / Number theory / Enumerative combinatorics / Binomial coefficient / Bernoulli number / Generating function / Eulerian number / Permutation / Random permutation statistics / Binomial series

A symmetrical Eulerian identity Fan Chung∗ Ron Graham∗ Don Knuth†

DocID: 1pALU - View Document

Eulerian path / NP-complete problems / BEST theorem / Degree / Connectivity / Hamiltonian path / Tree / Graph / Route inspection problem / Graph theory / Mathematics / Theoretical computer science

Counting Eulerian Circuits is #P-Complete Graham R. Brightwell Abstract We show that the problem of counting the number of Eulerian circuits in an undirected graph is complete for the class #P. The method employed is mod

DocID: 18y9b - View Document

Integer sequences / Binomial coefficient / Stirling numbers of the second kind / Stirling number / Factorial / Recurrence relation / Eulerian number / Binomial series / Meijer G-function / Mathematics / Combinatorics / Mathematical analysis

PDF Document

DocID: NkKB - View Document

Binomial coefficient / Eulerian number / Summation / Sigma-algebra / Permutation / Mathematics / Combinatorics / Integer sequences

07 New Formula for the Sum of Powers 7.1 Expression with binomial coefficients of a factorial Formula[removed]S. Ruiz ) When n

DocID: 860k - View Document