<--- Back to Details
First PageDocument Content
Fourier transform / Integral transform / Frequency domain / Periodogram / Fractional Fourier transform / Mathematical analysis / Fourier analysis / Discrete Fourier transform
Date: 2013-11-27 15:34:12
Fourier transform
Integral transform
Frequency domain
Periodogram
Fractional Fourier transform
Mathematical analysis
Fourier analysis
Discrete Fourier transform

Mathematics LET Subcommands INVERSE FOURIER TRANSFORM INVERSE FOURIER TRANSFORM PURPOSE

Add to Reading List

Source URL: www.itl.nist.gov

Download Document from Source Website

File Size: 49,84 KB

Share Document on Facebook

Similar Documents

Fourier analysis / Fourier transform / Fourier series / Spherical harmonics / Linear algebra / Rotation group SO / Wigner D-matrix / Fractional Fourier transform

FFTs on the Rotation Group Peter J. Kostelec∗ and Daniel N. Rockmore† Department of Mathematics Dartmouth College

DocID: 1oDoD - View Document

Stochastic processes / Mathematics / Segmentation / Fractal dimension / Discrete Fourier transform / Fractional Brownian motion / Meteosat / Hurst exponent / Brownian motion / Statistics / Fractals / Mathematical analysis

Microsoft Word - ijita12-3.doc

DocID: 12fck - View Document

Joseph Fourier / Generalized functions / Unitary operators / Fourier transform / Fourier inversion theorem / Fourier series / Fractional Fourier transform / Mathematical analysis / Fourier analysis / Integral transforms

Overview of Fourier sampling over the Boolean cube Eric Blais University of Waterloo October 18, 2014

DocID: 1107L - View Document

Integral transforms / Digital signal processing / Unitary operators / Fourier transform / Fourier series / Fraunhofer diffraction / Convolution / Fractional Fourier transform / Mathematical analysis / Fourier analysis / Joseph Fourier

Engineering Physics 3W4 "Acquisition and Analysis of Experimental Information" Part II: Fourier Transforms prepared by:

DocID: 10x5f - View Document

Digital signal processing / Wavelet / Fractional Fourier transform / Hartley transform / CRC Press / Laplace transform / Ahmed I. Zayed / Mathematical analysis / Fourier analysis / Integral transforms

Poularikas, A.D. “Frontmatter.” The Transforms and Applications Handbook: Second Edition. Ed. Alexander D. Poularikas Boca Raton: CRC Press LLC, 2000 The Electrical Engineering Handbook Series

DocID: YnVu - View Document