<--- Back to Details
First PageDocument Content
Solitons / Partial differential equations / Wave mechanics / Stability theory / Wave equation / Calculus of variations / Differential equation / Electromagnetic wave equation / Korteweg–de Vries equation / Calculus / Physics / Multivariable calculus
Date: 1998-12-10 12:48:48
Solitons
Partial differential equations
Wave mechanics
Stability theory
Wave equation
Calculus of variations
Differential equation
Electromagnetic wave equation
Korteweg–de Vries equation
Calculus
Physics
Multivariable calculus

PHYSICAL REVIEW E VOLUME 57, NUMBER 2 FEBRUARY 1998

Add to Reading List

Source URL: www.physics.utoronto.ca

Download Document from Source Website

File Size: 777,79 KB

Share Document on Facebook

Similar Documents

Korteweg-de Vries equation with a forcing term Solitary waves of the Kawahara equation Conclusion Fr´ed´eric CHARDARDa

DocID: 1o83u - View Document

Solitons / Partial differential equations / Differential equations / Stability theory / Kortewegde Vries equation / Fluid dynamics / Orbital stability / Wave / KadomtsevPetviashvili equation / BenjaminBonaMahony equation

Transverse stability issues in Hamiltonian partial differential equations Nikolay Tzvetkov (University Cergy-Pontoise) The famous Korteweg- de Vries (KdV) equation ∂t u + u∂x u + ∂x3 u = 0 is a one dimensional asym

DocID: 1mZ8f - View Document

Lattice supersymmetric Korteweg de Vries equation, Bilinear formalism, solutions and reductions to super-QRT mappings Adrian Stefan Carstea Geometry and Physics group (GAP), DFT-IFIN, Bucharest

DocID: 1mWJk - View Document

Convergence of a semi-discrete scheme for the stochastic Korteweg–de Vries equation. Arnaud Debussche∗ Jacques Printems†

DocID: 1mtJn - View Document

Control and Stabilization of the Korteweg-de Vries Equation on a Periodic Domain Camille Laurent Laboratoire de Math´ematiques Universit´e Paris-Sud Bˆ

DocID: 1lss0 - View Document