<--- Back to Details
First PageDocument Content
Economics / Financial markets / Investment / Financial risk / Financial ratios / Capital asset pricing model / Modern portfolio theory / Black–Scholes / Beta / Financial economics / Finance / Mathematical finance
Date: 2013-01-15 22:03:32
Economics
Financial markets
Investment
Financial risk
Financial ratios
Capital asset pricing model
Modern portfolio theory
Black–Scholes
Beta
Financial economics
Finance
Mathematical finance

WSC' 03 Sample Paper

Add to Reading List

Source URL: www.mssanz.org.au

Download Document from Source Website

File Size: 327,19 KB

Share Document on Facebook

Similar Documents

ECOLE CENTRALE MARSEILLE Math´ematiques Financi`eres TP2 Formule de Black–Scholes – Monte Carlo pour une option portant sur plusieurs sous–jacents ´ Pardoux

DocID: 1sVnD - View Document

ECOLE CENTRALE MARSEILLE Math´ematiques Financi`eres TP1 Formule de Black–Scholes – Monte Carlo, R´eduction de variance ´ Pardoux E.

DocID: 1sTgm - View Document

On the Emergence of Delta-Vega Hedging in the Black and Scholes Model Sebastian Herrmann ETH Zürich Joint work with Johannes Muhle-Karbe ETH Risk Day 2015

DocID: 1sLS7 - View Document

Economy / Maarten / Tilburg / Econometrics / BlackScholes model / Quantitative analyst / Mathematics

nekst Volume 19, fourth edition, June 2011 Black-Scholes Model in Context Interview Robert C. Merton

DocID: 1qRdw - View Document

Mathematical finance / Economy / Finance / Money / BlackScholes equation / BlackScholes model / Option / Volatility / Quantitative analyst / Futures contract / Geometric Brownian motion / Stochastic volatility

The derivation of the basic Black-Scholes options pricing equation follows from imposing the condition that a riskless por tfolio made up of stock and options must return the same interest rate as other riskless assets,

DocID: 1qcrE - View Document