<--- Back to Details
First PageDocument Content
Discrete geometry / Packaging / Bin packing problem / Packing problem / Heuristic function / Algorithm / Heuristic / Bin / Minkowski–Bouligand dimension / Mathematics / Applied mathematics / Theoretical computer science
Date: 2012-02-09 18:28:57
Discrete geometry
Packaging
Bin packing problem
Packing problem
Heuristic function
Algorithm
Heuristic
Bin
Minkowski–Bouligand dimension
Mathematics
Applied mathematics
Theoretical computer science

Add to Reading List

Source URL: www1.dem.ist.utl.pt

Download Document from Source Website

File Size: 416,13 KB

Share Document on Facebook

Similar Documents

Mathematics / Computational complexity theory / Algebra / NP-complete problems / Analysis of algorithms / Set cover problem / Bin packing problem / Linear programming relaxation / Vertex cover / Ring / Exponentiation / Big O notation

Set Covering with Ordered Replacement: Additive and Multiplicative Gaps Friedrich Eisenbrand1 , Naonori Kakimura?2 , Thomas Rothvoß??1 , and Laura Sanità? ? ?1 1

DocID: 1rlHb - View Document

Computational complexity theory / Mathematics / NP-complete problems / Theory of computation / Packing problems / Operations research / Approximation algorithms / Knapsack problem / Vertex cover / Bin packing problem / Hardness of approximation / Algorithm

Anna Adamaszek, Andreas Wiese Tutorials: Marvin K¨ unnemann Summer 2014

DocID: 1rdLy - View Document

Computational complexity theory / Mathematics / NP-complete problems / Theory of computation / Set cover problem / Approximation algorithm / Algorithm / Analysis of algorithms / Bin packing problem / Vertex cover

SET COVERING WITH OUR EYES CLOSED∗ FABRIZIO GRANDONI† , ANUPAM GUPTA‡ , STEFANO LEONARDI§ , PAULI MIETTINEN¶, PIOTR SANKOWSKI§ k , AND MOHIT SINGH∗∗ Abstract. Given a universe U of n elements and a weighted

DocID: 1rdoS - View Document

Mathematics / Mathematical analysis / Stochastic processes / Probability / Lemmas / Bin packing problem / Random walk / Coupling / Combinatorics

Average-Case Analyses of First Fit and Random Fit Bin Packing Susanne Albers Michael Mitzenmachery Abstract

DocID: 1r7zW - View Document

Computational complexity theory / Packing problems / Theory of computation / Bin packing problem / Bin

Approximating Bin Packing within O(log OP T · log log OP T ) bins Thomas Rothvoß Department of Mathematics, MIT TCS+ Online Seminar May 22, 2013

DocID: 1r5rp - View Document