<--- Back to Details
First PageDocument Content
Singular value decomposition / Matrix theory / Abstract algebra / Eigenvalues and eigenvectors / Principal component analysis / Matrix / Lanczos algorithm / Eigendecomposition of a matrix / Algebra / Linear algebra / Mathematics
Date: 2010-02-01 16:18:04
Singular value decomposition
Matrix theory
Abstract algebra
Eigenvalues and eigenvectors
Principal component analysis
Matrix
Lanczos algorithm
Eigendecomposition of a matrix
Algebra
Linear algebra
Mathematics

PCA Principal Component Analysis Dr. Saed Sayad University of Toronto[removed]removed]

Add to Reading List

Source URL: chem-eng.utoronto.ca

Download Document from Source Website

File Size: 1,34 MB

Share Document on Facebook

Similar Documents

Algebra / Linear algebra / Mathematics / Matrix theory / Spectral theory / Jordan normal form / Eigenvalues and eigenvectors / Matrix / Spectral theory of ordinary differential equations / Eigendecomposition of a matrix

ON THE SIGN CHARACTERISTIC OF HERMITIAN LINEARIZATIONS IN DL(P ) M. I. BUENO∗ , J. BREEN †,

DocID: 1qO1y - View Document

Algebra / Linear algebra / Mathematics / Numerical linear algebra / Matrix theory / Algebraic graph theory / Matrices / Spectral clustering / Eigenvalues and eigenvectors / Graph partition / Eigendecomposition of a matrix / Laplacian matrix

Incremental spectral clustering by efficiently updating the eigen-system

DocID: 1qGBt - View Document

Algebra / Mathematics / Linear algebra / Multivariate statistics / Matrix theory / Dimension reduction / Interpolation / Principal component analysis / Eigenvalues and eigenvectors / Kernel principal component analysis / Eigendecomposition of a matrix / Radial basis function

DOI: j01783.x COMPUTER GRAPHICS forum

DocID: 1qyoO - View Document

Algebra / Linear algebra / Mathematics / Matrix theory / Eigenvalues and eigenvectors / Matrix / Eigendecomposition of a matrix / Eigenvalue algorithm

Math 152: Linear Systems – WinterSection 4: Eigenvalues and Eigenvectors Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DocID: 1quDp - View Document