<--- Back to Details
First PageDocument Content
Econometrics / Statistical inference / Parametric statistics / Linear regression / Ordinary least squares / Resampling / Estimator / Bias of an estimator / Mean squared error / Statistics / Estimation theory / Regression analysis
Date: 2008-06-20 10:57:32
Econometrics
Statistical inference
Parametric statistics
Linear regression
Ordinary least squares
Resampling
Estimator
Bias of an estimator
Mean squared error
Statistics
Estimation theory
Regression analysis

Jackknifing Stock Return Predictions

Add to Reading List

Source URL: www.federalreserve.gov

Download Document from Source Website

File Size: 226,82 KB

Share Document on Facebook

Similar Documents

Linear Regression Kalman Filtering Based on Hyperspherical Deterministic Sampling Gerhard Kurz and Uwe D. Hanebeck Abstract— Nonlinear filtering based on Gaussian densities is commonly performed using so-called Linear

DocID: 1vq9G - View Document

Source and Channel Codes via Sparse Linear Regression Ramji Venkataramanan Sekhar Tatikonda

DocID: 1v5oo - View Document

Pattern Recognition And Machine Learning - EPFL - Fall 2015 Emtiyaz Khan, Timur Bagautdinov, Carlos Becker, Ilija Bogunovic & Ksenia Konyushkova 2. Linear Regression and Gradient Descent 2.1

DocID: 1v534 - View Document

Flexible Covariate Adjustments in Randomized Experiments Christoph Rothe Abstract: Linear regression adjustments for pre-treatment covariates are widely used in economics to lower the variance of treatment effect estimat

DocID: 1uYMC - View Document

C ONTRIBUTED RESEARCH ARTICLE 232 liureg: A Comprehensive R Package for the Liu Estimation of Linear Regression

DocID: 1uFMP - View Document