<--- Back to Details
First PageDocument Content
Ordinal number / Mathematics / Diophantine approximation / Transcendental numbers / Numbers / Exponential mechanism / Euclidean algorithm / Data privacy / Symbol / Differential privacy
Date: 2014-07-01 16:17:00
Ordinal number
Mathematics
Diophantine approximation
Transcendental numbers
Numbers
Exponential mechanism
Euclidean algorithm
Data privacy
Symbol
Differential privacy

Fingerprinting Codes and the Price of Approximate Differential Privacy

Add to Reading List

Source URL: privacytools.seas.harvard.edu

Download Document from Source Website

File Size: 243,23 KB

Share Document on Facebook

Similar Documents

Transcendental numbers / Number theory / E / Exponentials / LindemannWeierstrass theorem / Pi / Constructible universe / E-function / SchneiderLang theorem / Auxiliary function

Algebra 2. Teorema di Lindemann-Weierstrass. Roma, gennaio 2010 In this note we present Baker’s proof of the Lindemann-Weierstrass Theorem. Let Q denote the algebraic closure of Q inside C.

DocID: 1pFaV - View Document

Circuit complexity / NC / Lemmas / Transcendental numbers

Errata for ”Adaptive Covering Codes in the q-ary Hypercube” January 14, 2013 Location Statement of Lemma 4, third sentence

DocID: 1p33D - View Document

Analytic functions / Trigonometry / Exponentials / Dimensionless numbers / Ratios / Taylor series / Floating point / Sine / Inverse trigonometric functions / Hyperbolic function / Exponentiation / Transcendental function

BIT 41(3), pp. 540–562, 2001 RIGOROUS AND PORTABLE STANDARD FUNCTIONS SIEGFRIED M. RUMP Inst. of Computer Science III, Technical University Hamburg-Harburg, Schwarzenbergstr. 95, 21071 Hamburg, Germany. rump@tu-harbur

DocID: 1oKam - View Document

Mathematics / Mathematical analysis / Algebra / Polynomials / Transcendental numbers / Diophantine approximation / Coding theory / Algebraic function / Elliptic curve

ALGEBRAIC STRUCTURE AND DEGREE REDUCTION Let S ⊂ Fn . We define deg(S) to be the minimal degree of a non-zero polynomial that vanishes on S. We have seen that for a finite set S, deg(S) ≤ n|S|1/n . In fact, we can sa

DocID: 1nUp8 - View Document

Mathematical analysis / Mathematics / Number theory / Integer sequences / Meromorphic functions / Combinatorics / Polynomials / Bernoulli polynomials / Bernoulli number / Riemann zeta function / Bessel function / Transcendental number

A MODIFIED BERNOULLI NUMBER D. Zagier The classical Bernoulli numbers Bn , defined by the generating function ∞

DocID: 1nsMX - View Document