<--- Back to Details
First PageDocument Content
Constructible universe / Proof theory / Ordinal arithmetic / Normal function / Mathematical logic / Ordinal numbers / Set theory
Date: 2011-06-16 12:18:14
Constructible universe
Proof theory
Ordinal arithmetic
Normal function
Mathematical logic
Ordinal numbers
Set theory

Add to Reading List

Source URL: www.karlin.mff.cuni.cz

Download Document from Source Website

File Size: 682,82 KB

Share Document on Facebook

Similar Documents

Hearing Boards Division PUBLIC NOTICE Red Light Camera Program The red light camera program is in effect until February 28, 2018 and will function as normal.

DocID: 1tMMw - View Document

Mathematical analysis / Mathematics / Analysis / Probability distributions / Normal distribution / Big O notation / Limit of a function / Exponentiation / Central limit theorem / Chebyshev function / Heat equation

JMLR: Workshop and Conference Proceedings vol 40:1–18, 2015 Learning the dependence structure of rare events: a non-asymptotic study Nicolas Goix Anne Sabourin

DocID: 1rocp - View Document

Statistics / Probability / Maximum likelihood estimation / Probability distributions / Bayesian statistics / Expectationmaximization algorithm / Mixture model / Normal distribution / K-means clustering / Likelihood function / Data stream clustering / Gamma distribution

Scalable Training of Mixture Models via Coresets Dan Feldman MIT Matthew Faulkner

DocID: 1riQ6 - View Document

Statistics / Mathematical analysis / Probability / Probability distributions / Regression analysis / Linear regression / Normal distribution / Quantile regression / Quantile function / Beta distribution / Value at risk / Skewness

Value–at–Risk Prediction: A Comparison of Alternative Strategies∗ Keith Kuestera a Stefan Mittnikb c d †

DocID: 1rhMw - View Document

Computer arithmetic / Computing / Mathematics / Mathematical analysis / Normal number / IEEE floating point / Decimal64 floating-point format / Double-precision floating-point format / Decimal128 floating-point format / Decimal32 floating-point format / Rounding / Exponential function

Worst Cases for the Exponential Function in the IEEE 754r decimal64 Format Vincent Lefèvre, Damien Stehlé, Paul Zimmermann LORIA / INRIA Lorraine JNAO 2006

DocID: 1reF1 - View Document