<--- Back to Details
First PageDocument Content
Data analysis / Consensus clustering / K-means clustering / Clustering high-dimensional data / Oracle Data Mining / DBSCAN / Hierarchical clustering / Data stream clustering / Fuzzy clustering / Statistics / Cluster analysis / Multivariate statistics
Date: 2013-01-05 06:05:58
Data analysis
Consensus clustering
K-means clustering
Clustering high-dimensional data
Oracle Data Mining
DBSCAN
Hierarchical clustering
Data stream clustering
Fuzzy clustering
Statistics
Cluster analysis
Multivariate statistics

Add to Reading List

Source URL: ftp.heanet.ie

Download Document from Source Website

File Size: 163,00 KB

Share Document on Facebook

Similar Documents

Cluster analysis / Statistics / Computational statistics / Data analysis / Data mining / Geostatistics / DBSCAN / Correlation clustering / Polygon / Consensus clustering / Hierarchical clustering

Proceedings of the 1stACM SIGSPATIAL International Workshop on Data Mining for Geoinformatics (DMGoffered under the auspices of the

DocID: 1qYil - View Document

Statistics / Data analysis / Cluster analysis / Computational statistics / Data mining / Geostatistics / DBSCAN / Spectral clustering / K-means clustering / Clustering / Bioinformatics / Consensus clustering

FP7-ICT Strategic Targeted Research Project (STREP) TrendMiner (NoLarge-scale, Cross-lingual Trend Mining and Summarisation of Real-time Media Streams D3.2.1 Clustering models for discovery of regional and demo

DocID: 1q9W5 - View Document

Data mining / SUBCLU / Cluster analysis / DBSCAN / Linear subspace / Clustering high-dimensional data / K-means clustering

Shaping City Neighborhoods Leveraging Crowd Sensors Giuseppe Rizzoa,c,b,∗, Rosa Meob , Ruggero G. Pensab , Giacomo Falconeb , Rapha¨el Troncyc a ISMB, Turin, Italy

DocID: 1ploB - View Document

Cluster analysis / Data mining / Geostatistics / K-means clustering / Clustering high-dimensional data / K-medoids / Fuzzy clustering / OPTICS algorithm / Image segmentation / DBSCAN / Hierarchical clustering / Determining the number of clusters in a data set

CURLER: Finding and Visualizing Nonlinear Correlation Clusters ∗ Anthony K. H. Tung Xin Xu

DocID: 1p7Vi - View Document

DBSCAN / Hans-Peter Kriegel / Clustering / Cluster analysis / Geographic information system / Geostatistics / Data mining

Extracting Dense Regions from Hurricane Trajectory Data Praveen Kumar Tripathi Madhuri Debnath Ramez Elmasri Department of Computer Science, University of Texas Arlington

DocID: 1oW0y - View Document