<--- Back to Details
First PageDocument Content
Operations research / Network flow / Mathematical optimization / Maximum flow problem / Shortest path problem / Optimal control / Flow network / Graph / Dynamic programming / Mathematics / Graph theory / Theoretical computer science
Date: 2010-02-01 11:59:55
Operations research
Network flow
Mathematical optimization
Maximum flow problem
Shortest path problem
Optimal control
Flow network
Graph
Dynamic programming
Mathematics
Graph theory
Theoretical computer science

New complexity results for time-constrained dynamical optimal path problems

Add to Reading List

Source URL: www.emis.ams.org

Download Document from Source Website

File Size: 312,37 KB

Share Document on Facebook

Similar Documents

EE365: Deterministic Finite State Control Deterministic optimal control Shortest path problem Dynamic programming Examples

DocID: 1vg0M - View Document

We approach the problem of computing geometric centralities, such as closeness and harmonic centrality, on very large graphs; traditionally this task requires an all-pairs shortest-path computation in the exact case, or

DocID: 1sauD - View Document

We approach the problem of computing geometric centralities, such as closeness and harmonic centrality, on very large graphs; traditionally this task requires an all-pairs shortest-path computation in the exact case, or

DocID: 1rNo2 - View Document

Network architecture / Computing / Fiber-optic communications / Network protocols / Computer architecture / Routing / Automatically switched optical network / Synchronous optical networking / Bandwidth / Multiprotocol Label Switching / Shortest path problem

Improving Restoration Success in Mesh Optical Networks Fang Yu 1, Rakesh Sinha2, Dongmei Wang3, Guangzhi Li3, John Strand2, Robert Doverspike2, Charles Kalmanek 3, and Bruce Cortez 2 1 EECS Department, UC Berkeley, Berke

DocID: 1rrH0 - View Document

Graph theory / Network flow / Mathematics / EdmondsKarp algorithm / Flow network / Maximum flow problem / FordFulkerson algorithm / Cut / Graph traversal / Minimum cut / Shortest path problem / Max-flow min-cut theorem

CS261: A Second Course in Algorithms Lecture #2: Augmenting Path Algorithms for Maximum Flow∗ Tim Roughgarden† January 7, 2016

DocID: 1rn0k - View Document