<--- Back to Details
First PageDocument Content
Mathematical analysis / Von Neumann algebras / Linear algebra / Group algebra / Hilbert space / Trace / Tomita–Takesaki theory / Commutation theorem / Algebra / Operator theory / Abstract algebra
Date: 2011-11-07 12:12:07
Mathematical analysis
Von Neumann algebras
Linear algebra
Group algebra
Hilbert space
Trace
Tomita–Takesaki theory
Commutation theorem
Algebra
Operator theory
Abstract algebra

Add to Reading List

Source URL: www.math.harvard.edu

Download Document from Source Website

File Size: 151,40 KB

Share Document on Facebook

Similar Documents

Physics / Operator theory / Theoretical physics / Mathematical analysis / Von Neumann algebras / Quantum mechanics / TomitaTakesaki theory / Relativistic quantum mechanics / Commutation theorem / Heat transfer physics

The philosophy of physics meets the Tomita-Takesaki modular theory

DocID: 1rlyB - View Document

Monoidal categories / Hopf algebra / Representation theory / Tomita–Takesaki theory / Structure / Quantum group / Spinor / Sigma-algebra / Abstract algebra / Algebra / Mathematics

CYCLIC COHOMOLOGY, HOPF ALGEBRAS AND THE MODULAR THEORY arXiv:math.QAv1 3 MayAlain CONNES1 and Henri MOSCOVICI2

DocID: 1fRqS - View Document

Operator theory / Tomita–Takesaki theory / Partial differential equations

Proceedings, Eleventh International Conference on Principles of Knowledge Representation and Reasoning[removed]Action Theory Contraction and Minimal Change Ivan Jos´e Varzinczak IRIT – Universit´e de Toulouse Toulous

DocID: TQCB - View Document

Mathematical analysis / Von Neumann algebras / Linear algebra / Group algebra / Hilbert space / Trace / Tomita–Takesaki theory / Commutation theorem / Algebra / Operator theory / Abstract algebra

PDF Document

DocID: msjs - View Document

Operator theory / Representation theory of Lie groups / Functional analysis / Von Neumann algebras / Harmonic analysis / Convolution / Group action / Tomita–Takesaki theory / Weight / Abstract algebra / Mathematical analysis / Algebra

PDF Document

DocID: mpSQ - View Document