<--- Back to Details
First PageDocument Content
Natural language processing / Business intelligence / Risk / Actuarial science / Unstructured data / Text mining / Operational risk / Analytics / Information extraction / Science / Statistics / Management
Date: 2015-02-05 12:29:39
Natural language processing
Business intelligence
Risk
Actuarial science
Unstructured data
Text mining
Operational risk
Analytics
Information extraction
Science
Statistics
Management

RevistaSinfac_CP_210x280.indd

Add to Reading List

Source URL: www.serasaexperian.com.br

Download Document from Source Website

File Size: 2,79 MB

Share Document on Facebook

Similar Documents

Toward Completeness in Concept Extraction and Classification Eduard Hovy and Zornitsa Kozareva USC Information Sciences Institute 4676 Admiralty Way Marina del Rey, CA 90292 ,

DocID: 1vo3X - View Document

ISPRS Commission III on ‘Remote Sensing’ and WG III/5 on ‘Information Extraction from LiDAR Intensity Data’ is pleased to announce the availability of two data sets collected using different sensors and platforms

DocID: 1veuV - View Document

Distributional Semantics for Medical Information Extraction Lautaro Quiroz1, Lydia Mennes2, Mostafa Dehghani1, Evangelos Kanoulas1 1 2 University of Amsterdam, CTcue

DocID: 1v2Ee - View Document

Clinical Information Extraction at the CLEF eHealth Evaluation lab 2016 Aur´elie N´ev´eol1 , K. Bretonnel Cohen1,2 , Cyril Grouin1 , Thierry Hamon1,3 Thomas Lavergne1,4 , Liadh Kelly5 , Lorraine Goeuriot6 Gr´egoire R

DocID: 1v2k0 - View Document

Handling uncertainty in information extraction Maurice van Keulen1 and Mena B. Habib1 University of Twente, Faculty of EEMCS, Enschede, The Netherlands {m.vankeulen,m.badiehhabibmorgan}@utwente.nl Abstract. This positio

DocID: 1uYrq - View Document