Okapi

Results: 193



#Item
41PageRank / Reputation management / Search engine optimization / Relevance feedback / Uniform resource identifier / Okapi BM25 / Information science / Information retrieval / Crowdsourcing

Overview of the TREC-2002 Web Track Nick Craswell and David Hawking CSIRO Mathematical and Information Sciences, Canberra, Australia {Nick.Craswell,David.Hawking}@csiro.au

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2003-04-16 09:48:52
42Query expansion / Okapi BM25 / Relevance / Precision and recall / Language model / Search engine indexing / Zettair / Relevance feedback / Web query classification / Information science / Information retrieval / Query likelihood model

RMIT University at TREC 2005: Terabyte and Robust Track Yaniv Bernstein Bodo Billerbeck Steven Garcia Nicholas Lester Falk Scholer Justin Zobel School of Computer Science and Information Technology RMIT University, GPO B

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2006-02-21 09:28:41
43Relevance feedback / Document retrieval / Precision and recall / Search engine indexing / Text Retrieval Conference / Document classification / Ranking function / Okapi BM25 / Relevance / Information science / Information retrieval / Science

Structured Queries for Legal Search Yangbo Zhu Le Zhao Jamie Callan

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2008-02-05 08:23:36
44Searching / Google / Reputation management / PageRank / Okapi BM25 / Query expansion / Ranking / Search engine indexing / Tf*idf / Information science / Information retrieval / Link analysis

Research on Enterprise Track of TREC 2007 at SJTU APEX Lab Huizhong Duan1, Qi Zhou2, Zhen Lu3, Ou Jin4, Shenghua Bao5, Yunbo Cao6 and Yong Yu7 Apex Knowledge & Data Management Lab 308 Yifu Building, 800 Dongchuan Road, S

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2008-02-05 08:42:30
45Relevance feedback / Tf*idf / Precision and recall / Relevance / Search engine indexing / Okapi BM25 / Ranking function / Information science / Information retrieval / Query expansion

Ricoh Research at TREC 2006: Enterprise Track Ganmei You, Yaojie Lu, Gang Li, Yueyan Yin Ricoh Software Research Center Beijing Co., Ltd, Beijing, China {ganmei.you, yaojie.lu, gang.li, yueyan.yin}@srcb.ricoh.com 1. Abs

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2007-02-16 13:07:45
46Text Retrieval Conference / Relevance feedback / Search engine indexing / Relevance / Document retrieval / Query expansion / Concept Search / Learning to rank / Information science / Information retrieval / Okapi BM25

TREC 2005 Genomics Track at I2R

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2007-02-16 13:07:42
47Document retrieval / Search engine indexing / BM25 / Full text search / Okapi BM25 / Information science / Information retrieval / Tf*idf

Microsoft Word - terabyte06ict.doc

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2007-02-16 13:07:37
48Natural language processing / Statistical natural language processing / Tf*idf / Sentiment analysis / Search engine indexing / Language model / Subject / Okapi BM25 / Information science / Information retrieval / Science

RGU at the TREC Blog Track Malcolm Clark, Ulises Cervi˜ no Beresi, Stuart Watt, David Harper The School of Computing The Robert Gordon University Aberdeen, Scotland, United Kingdom

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2007-02-16 13:07:46
49Okapi BM25 / Query expansion / Precision and recall / Relevance feedback / Text Retrieval Conference / Search engine indexing / Email / BM25 / Information science / Information retrieval / Science

Enabling rapid composition of tailored documents

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2006-02-21 09:28:34
50Okapi BM25 / Text Retrieval Conference / Relevance / Language model / Tf*idf / Probabilistic relevance model / Ranking function / Precision and recall / N-gram / Information science / Information retrieval / Science

A Generation Model to Unify Topic Relevance and Lexicon-based Sentiment for Opinion Retrieval Min Zhang Xingyao Ye

Add to Reading List

Source URL: www.thuir.cn

Language: English - Date: 2008-12-23 05:27:37
UPDATE