<--- Back to Details
First PageDocument Content
Category theory / Initial and terminal objects / Nothing / Limit / Product / Coproduct / Diagram / Cone / Universal property / Void type / Property
Date: 2016-02-29 17:49:20
Category theory
Initial and terminal objects
Nothing
Limit
Product
Coproduct
Diagram
Cone
Universal property
Void type
Property

Haskell eXchangeProgramming from Universal Properties Gershom Bazerman,


Add to Reading List

Source URL: gbaz.github.io

Download Document from Source Website

File Size: 1,07 MB

Share Document on Facebook

Similar Documents

HAWC-CoProduct Code: Technical Data Sheet Revision: # 003

DocID: 1rxpS - View Document

Category theory / Mathematics / Abstract algebra / Functors / Limit / Adjoint functors / Universal property / Diagram / Natural transformation / Coproduct / Product / Grothendieck topology

Cartesian Closure for Stable Categories (draft) Paul Taylor

DocID: 1rpTZ - View Document

Mathematics / Abstract algebra / Algebra / Homological algebra / Triangulated category / Morphism / Functor / Coproduct / Yoneda lemma / Isomorphism / Category / Morphism of algebraic varieties

Perverse sheaves and the Weil conjectures Prof. Dr. Uwe Jannsen Summer Term 16 Inhaltsverzeichnis 1 Triangulated categories

DocID: 1r6MW - View Document

Category theory / Algebra / Mathematics / Monoidal categories / Lambda calculus / Functors / Algebraic topology / Cartesian closed category / Topological quantum field theory / Morphism / Natural transformation / Coproduct

arXiv:0903.0340v3 [quant-ph] 6 JunPhysics, Topology, Logic and Computation: A Rosetta Stone John C. Baez Department of Mathematics, University of California

DocID: 1r6vo - View Document

Category theory / Algebra / Mathematics / Monoidal categories / Monoid / Enriched category / Adjoint functors / Cartesian closed category / Coproduct / Bicategory / Functor / Sheaf

Monoidal Indeterminates and Categories of Possible WorldsI C. Hermida, R. D. Tennent∗ School of Computing, Queen’s University, Kingston, Canada K7L 3N6 Abstract Given any symmetric monoidal category C, a small symmet

DocID: 1qIeP - View Document