<--- Back to Details
First PageDocument Content
Estimation theory / M-estimators / Regression analysis / Segmentation / Expectation–maximization algorithm / Active appearance model / Least squares / Active shape model / RANSAC / Statistics / Robust statistics / Computer vision
Date: 2014-07-31 18:02:13
Estimation theory
M-estimators
Regression analysis
Segmentation
Expectation–maximization algorithm
Active appearance model
Least squares
Active shape model
RANSAC
Statistics
Robust statistics
Computer vision

LNCSNon-rigid Object Segmentation Using Robust Active Shape Models

Add to Reading List

Source URL: vislab.isr.ist.utl.pt

Download Document from Source Website

File Size: 402,81 KB

Share Document on Facebook

Similar Documents

Int J Comput Vis:74–85 DOIs11263Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic Constraints Davide Scaramuzza

DocID: 1u48f - View Document

J. Matas and O. Chum: R-RANSAC with SPRT; ICCVRandomized RANSAC with Sequential Probability Ratio Test Jiˇr´ı Matas and Ondˇrej Chum Center for Machine Perception, Dept. of Cybernetics, CTU Prague, Karlovo n´

DocID: 1tJ3B - View Document

Sparse Subspace Clustering Ehsan Elhamifar Ren´e Vidal Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218, USA Abstract (RANSAC) [11], fit a subspace of dimension d to randomly

DocID: 1tcA8 - View Document

Random sample consensus / SRI International / Computer vision / Robot control / Pose / Information / Data / Applied mathematics / Perspective-n-Point

Absolute Camera Pose Estimation Scoring Evaluation Goal: Evaluation of several scoring metrics for robust absolute camera pose estimation using RANSAC-based methods Description:

DocID: 1pVym - View Document

Robust statistics / RANSAC / SRI International / Spatial verification

¨ ETH Zurich Computer Science Department Prof. Marc Pollefeys Prof. Luc Van Gool

DocID: 1pG14 - View Document