<--- Back to Details
First PageDocument Content
Covariance and correlation / Variogram / Kriging / Semivariance / MATLAB / Covariance / Variance / Normal distribution / Matrix / Statistics / Geostatistics / Data analysis
Date: 1998-05-28 15:59:29
Covariance and correlation
Variogram
Kriging
Semivariance
MATLAB
Covariance
Variance
Normal distribution
Matrix
Statistics
Geostatistics
Data analysis

Kriging Toolbox Chi Toolbox

Add to Reading List

Source URL: globec.whoi.edu

Download Document from Source Website

File Size: 174,00 KB

Share Document on Facebook

Similar Documents

Spatial Gaussian Process (GP) models for Massive Geostatistical Datasets Spatial Gaussian Process (GP) models—subsume kriging—for point-referenced geospatial datasets provide a statistically valid framework for predi

DocID: 1sJDW - View Document

Geostatistics / Interpolation / MAC service data unit / Media access control / Kriging / Lak language / Freeport-McMoRan / Culture / Data

Tenke-Fungurume Dynamic unfolding-complex geology case study of Tenke-Fungurume deposits by Justin Cardwell and Alyson Cartwright

DocID: 1roOC - View Document

Statistics / Regression analysis / Statistical theory / Entropy / Information theory / Randomness / Least squares / Kriging / Errors and residuals / Linear regression / Lossless JPEG

OPTIMAL PREDICTORS FOR THE DATA COMPRESSION OF DIGITAL ELEVATION MODELS USING THE METHOD OF LAGRANGE MULTIPLIERS .

DocID: 1rica - View Document

Geostatistics / Computing / Software engineering / Academia / Kriging / Reservoir modeling / Variogram / Fortran

Reservoir Modeling with GSLIB Introduction to GSLIB • •

DocID: 1rgx6 - View Document

Statistics / Regression analysis / Estimation theory / Linear regression / Mean squared error / Errors and residuals / Autocorrelation / Prediction / Sampling / Multicollinearity / Regression-Kriging

CSIRO PUBLISHING www.publish.csiro.au/journals/ajsr Australian Journal of Soil Research, 2003, 41, 1403–1422

DocID: 1rftp - View Document