<--- Back to Details
First PageDocument Content
Calculus / Variational principle / Optimal control / Calculus of variations / Israel Gelfand / Infinitesimal calculus / Michael Spivak / Secondary calculus and cohomological physics / Variational bicomplex / Mathematical analysis / Mathematics / Mathematical optimization
Date: 2012-11-06 12:33:35
Calculus
Variational principle
Optimal control
Calculus of variations
Israel Gelfand
Infinitesimal calculus
Michael Spivak
Secondary calculus and cohomological physics
Variational bicomplex
Mathematical analysis
Mathematics
Mathematical optimization

Classical Optimization Math 618K Professor:

Add to Reading List

Source URL: www.mathstat.concordia.ca

Download Document from Source Website

File Size: 32,81 KB

Share Document on Facebook

Similar Documents

Infinity / Calculus / Philosophy of mathematics / Mathematical objects / Non-standard analysis / Infinitesimal / Gottfried Wilhelm Leibniz / Actual infinity / Integral / Bonaventura Cavalieri / Number / Eberhard Knobloch

19 Documenta Math. Leibniz and the Infinite

DocID: 1pELf - View Document

Infinity / Calculus / Non-standard analysis / Mathematical analysis / Differential calculus / Infinitesimal / Derivative / Joseph-Louis Lagrange / Differential / Transcendental number / Pi / Gottfried Wilhelm Leibniz

How Euler Did It by Ed Sandifer Foundations of Calculus September 2006 As we begin a new academic year, many of us are introducing another generation of students to the magic of calculus. As always, those of us who teach

DocID: 1pB6e - View Document

Functions and mappings / Calculus / Infinitesimal / Series / Limit of a function / Georg Cantor / Paul du Bois-Reymond / Emil du Bois-Reymond / Infinity / Derivative / Integral / Norm

The Infinite and Infinitesimal Quantities of du Bois-Reymond and their Reception GORDON FISHER Communicated by M. KLINE

DocID: 1pmLX - View Document

Non-standard analysis / Infinity / Mathematical objects / Calculus / Mathematical logic / Infinitesimal / Quantum field theory / Real number / Augustin-Louis Cauchy / Karl Weierstrass / Number / Limit of a function

Taming infinities M. Hairer University of Warwick 2nd Heidelberg Laureate Forum

DocID: 1p4K8 - View Document

Infinity / Calculus / Philosophy of mathematics / Mathematical objects / Non-standard analysis / Infinitesimal / Gottfried Wilhelm Leibniz / Actual infinity / Integral / Bonaventura Cavalieri / Number / Eberhard Knobloch

19 Documenta Math. Leibniz and the Infinite

DocID: 1ouUt - View Document