<--- Back to Details
First PageDocument Content
Spectral clustering / Cluster analysis / Dimension reduction / Kernel trick / K-means clustering / Principal component analysis / Isomap / Graph partition / Mutual information / Statistics / Multivariate statistics / Nonlinear dimensionality reduction
Date: 2012-06-07 13:20:54
Spectral clustering
Cluster analysis
Dimension reduction
Kernel trick
K-means clustering
Principal component analysis
Isomap
Graph partition
Mutual information
Statistics
Multivariate statistics
Nonlinear dimensionality reduction

An Iterative Locally Linear Embedding Algorithm

Add to Reading List

Source URL: icml.cc

Download Document from Source Website

File Size: 223,10 KB

Share Document on Facebook

Similar Documents

On a Connection between Maximum Variance Unfolding, Shortest Path Problems and IsoMap Alexander Paprotny Inst. f¨ ur Mathematik, TU Berlin

DocID: 1uPCu - View Document

The Isomap algorithm in distance geometry Leo Liberti and Claudia D’Ambrosio CNRS LIX Ecole Polytechnique, 91128 Palaiseau, France {liberti,dambrosio}@lix.polytechnique.fr Abstract

DocID: 1u3Ye - View Document

Mathematics / Graph theory / Network theory / Discrete mathematics / Edsger W. Dijkstra / Graph / Shortest path problem / Topological graph theory / Isomap

Community-Aware Mobile Networking Michael Kuhn Computer Engineering and Networks Laboratory ETH Zurich 8092 Zurich, Switzerland

DocID: 1qWRA - View Document

Mathematics / Statistics / Dimension reduction / Topology / Multivariate statistics / Computational statistics / Machine learning / Dimension / Nonlinear dimensionality reduction / Isomap / Semidefinite embedding / Embedding

Unsupervised Image Embedding Using Nonparametric Statistics Guobiao Mei University of California, Riverside Abstract

DocID: 1qUPd - View Document

Multivariate statistics / Dimension reduction / Computational statistics / Machine learning / Dimension / Nonlinear dimensionality reduction / Dimensionality reduction / Isomap / Semidefinite embedding / Spectral clustering / Kernel principal component analysis / T-distributed stochastic neighbor embedding

Discussion of “Spectral Dimensionality Reduction via Maximum Entropy” Laurens van der Maaten Delft University of Technology

DocID: 1pD0z - View Document