<--- Back to Details
First PageDocument Content
Applied mathematics / RSA / Naccache–Stern cryptosystem / XTR / Prime number / Merkle–Hellman knapsack cryptosystem / Logarithm / ICE / Blum–Goldwasser cryptosystem / Public-key cryptography / Mathematics / Electronic commerce
Date: 2008-06-18 04:49:08
Applied mathematics
RSA
Naccache–Stern cryptosystem
XTR
Prime number
Merkle–Hellman knapsack cryptosystem
Logarithm
ICE
Blum–Goldwasser cryptosystem
Public-key cryptography
Mathematics
Electronic commerce

Add to Reading List

Source URL: eprint.iacr.org

Download Document from Source Website

File Size: 242,33 KB

Share Document on Facebook

Similar Documents

Cyberwarfare / Mathematics / RSA / Chosen-ciphertext attack / Ciphertext / Cryptanalysis / Prime number / Blum–Goldwasser cryptosystem / Merkle–Hellman knapsack cryptosystem / Public-key cryptography / Electronic commerce / Espionage

A chosen text attack on the RSA cryptosystem and some discrete logarithm schemes Y. Desmedt Aangesteld Navorser NFWO Katholieke Universiteit Leuven Laboratorium ESAT

DocID: 1gDwV - View Document

Security / Paillier cryptosystem / Merkle–Hellman knapsack cryptosystem / Niederreiter cryptosystem / Cryptography / Post-quantum cryptography / Cryptosystem / RSA / Semantic security / Public-key cryptography / Cyberwarfare / Applied mathematics

Noname manuscript No. (will be inserted by the editor) Generalizing Cryptosystems Based on the Subset Sum Problem Aniket Kate · Ian Goldberg

DocID: 19CfC - View Document

Number theory / RSA / Modular arithmetic / Chinese remainder theorem / Merkle–Hellman knapsack cryptosystem / XTR / Public-key cryptography / Mathematics / Electronic commerce

Reconstructing RSA Private Keys from Random Key Bits Nadia Heninger [removed] Hovav Shacham [removed]

DocID: Yejg - View Document

Combinatorial optimization / NP-complete problems / Permutations / Cryptography / Knapsack problem / Operations research / Merkle–Hellman knapsack cryptosystem / Fisher–Yates shuffle / Universal property / Theoretical computer science / Mathematics / Computational complexity theory

Packing a Knapsack of Unknown Capacity Yann Disser∗ , Max Klimm, Nicole Megow† , and Sebastian Stiller Department of Mathematics, Technische Universität Berlin, Germany {disser,klimm,nmegow,stiller}@math.tu-berlin.d

DocID: nW4e - View Document