<--- Back to Details
First PageDocument Content
Algebra / Singular value decomposition / Physical oceanography / Dimension reduction / Atlantic Ocean / Principal component analysis / Isomap / Kernel principal component analysis / Nonlinear dimensionality reduction / Statistics / Atmospheric sciences / Multivariate statistics
Date: 2015-05-08 05:53:07
Algebra
Singular value decomposition
Physical oceanography
Dimension reduction
Atlantic Ocean
Principal component analysis
Isomap
Kernel principal component analysis
Nonlinear dimensionality reduction
Statistics
Atmospheric sciences
Multivariate statistics

egu_logo_without_circle_grey

Add to Reading List

Source URL: www.nonlin-processes-geophys-discuss.net

Download Document from Source Website

File Size: 596,83 KB

Share Document on Facebook

Similar Documents

On a Connection between Maximum Variance Unfolding, Shortest Path Problems and IsoMap Alexander Paprotny Inst. f¨ ur Mathematik, TU Berlin

DocID: 1uPCu - View Document

The Isomap algorithm in distance geometry Leo Liberti and Claudia D’Ambrosio CNRS LIX Ecole Polytechnique, 91128 Palaiseau, France {liberti,dambrosio}@lix.polytechnique.fr Abstract

DocID: 1u3Ye - View Document

Mathematics / Graph theory / Network theory / Discrete mathematics / Edsger W. Dijkstra / Graph / Shortest path problem / Topological graph theory / Isomap

Community-Aware Mobile Networking Michael Kuhn Computer Engineering and Networks Laboratory ETH Zurich 8092 Zurich, Switzerland

DocID: 1qWRA - View Document

Mathematics / Statistics / Dimension reduction / Topology / Multivariate statistics / Computational statistics / Machine learning / Dimension / Nonlinear dimensionality reduction / Isomap / Semidefinite embedding / Embedding

Unsupervised Image Embedding Using Nonparametric Statistics Guobiao Mei University of California, Riverside Abstract

DocID: 1qUPd - View Document

Multivariate statistics / Dimension reduction / Computational statistics / Machine learning / Dimension / Nonlinear dimensionality reduction / Dimensionality reduction / Isomap / Semidefinite embedding / Spectral clustering / Kernel principal component analysis / T-distributed stochastic neighbor embedding

Discussion of “Spectral Dimensionality Reduction via Maximum Entropy” Laurens van der Maaten Delft University of Technology

DocID: 1pD0z - View Document