<--- Back to Details
First PageDocument Content
Computational statistics / Isomap / Nonlinear dimensionality reduction / Multidimensional scaling / Principal component analysis / Manifold / Geodesic / Topological manifold / Differentiable manifold / Statistics / Multivariate statistics / Dimension reduction
Date: 2004-04-04 07:03:40
Computational statistics
Isomap
Nonlinear dimensionality reduction
Multidimensional scaling
Principal component analysis
Manifold
Geodesic
Topological manifold
Differentiable manifold
Statistics
Multivariate statistics
Dimension reduction

Add to Reading List

Source URL: www-clmc.usc.edu

Download Document from Source Website

File Size: 784,04 KB

Share Document on Facebook

Similar Documents

On a Connection between Maximum Variance Unfolding, Shortest Path Problems and IsoMap Alexander Paprotny Inst. f¨ ur Mathematik, TU Berlin

DocID: 1uPCu - View Document

The Isomap algorithm in distance geometry Leo Liberti and Claudia D’Ambrosio CNRS LIX Ecole Polytechnique, 91128 Palaiseau, France {liberti,dambrosio}@lix.polytechnique.fr Abstract

DocID: 1u3Ye - View Document

Mathematics / Graph theory / Network theory / Discrete mathematics / Edsger W. Dijkstra / Graph / Shortest path problem / Topological graph theory / Isomap

Community-Aware Mobile Networking Michael Kuhn Computer Engineering and Networks Laboratory ETH Zurich 8092 Zurich, Switzerland

DocID: 1qWRA - View Document

Mathematics / Statistics / Dimension reduction / Topology / Multivariate statistics / Computational statistics / Machine learning / Dimension / Nonlinear dimensionality reduction / Isomap / Semidefinite embedding / Embedding

Unsupervised Image Embedding Using Nonparametric Statistics Guobiao Mei University of California, Riverside Abstract

DocID: 1qUPd - View Document

Multivariate statistics / Dimension reduction / Computational statistics / Machine learning / Dimension / Nonlinear dimensionality reduction / Dimensionality reduction / Isomap / Semidefinite embedding / Spectral clustering / Kernel principal component analysis / T-distributed stochastic neighbor embedding

Discussion of “Spectral Dimensionality Reduction via Maximum Entropy” Laurens van der Maaten Delft University of Technology

DocID: 1pD0z - View Document