<--- Back to Details
First PageDocument Content
Randomness / Numerical analysis / Statistical mechanics / Probabilistic complexity theory / Markov chain Monte Carlo / Variance reduction / Stochastic / Pseudorandomness / Nicholas Metropolis / Mathematics / Monte Carlo methods / Probability and statistics
Date: 2011-07-26 17:11:46
Randomness
Numerical analysis
Statistical mechanics
Probabilistic complexity theory
Markov chain Monte Carlo
Variance reduction
Stochastic
Pseudorandomness
Nicholas Metropolis
Mathematics
Monte Carlo methods
Probability and statistics

Add to Reading List

Source URL: www.pjaeckel.webspace.virginmedia.com

Download Document from Source Website

File Size: 736,83 KB

Share Document on Facebook

Similar Documents

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCHA Survey of Monte Carlo Tree Search Methods Cameron Browne, Member, IEEE, Edward Powley, Member, IEEE, Daniel Whitehouse, Memb

DocID: 1ufs4 - View Document

Multifidelity Monte Carlo Methods for Uncertainty Quantification Karen E. Willcox Joint work with Tiangang Cui, Max Gunzburger, Boris Kramer, Youssef Marzouk, Benjamin Peherstorfer

DocID: 1tLWW - View Document

Monte Carlo Methods Lecture slides for Chapter 17 of Deep Learning www.deeplearningbook.org Ian Goodfellow Last updated

DocID: 1tF09 - View Document

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCHA Survey of Monte Carlo Tree Search Methods Cameron Browne, Member, IEEE, Edward Powley, Member, IEEE, Daniel Whitehouse, Memb

DocID: 1tjL6 - View Document

Advances in Markov chain Monte Carlo methods Iain Murray M.A., M.Sci., Natural Sciences (Physics), University of Cambridge, UKGatsby Computational Neuroscience Unit

DocID: 1tdYD - View Document