<--- Back to Details
First PageDocument Content
Convergence / Convergence of random variables / Statistical theory / Law of large numbers / Limit superior and limit inferior / Series / Borel–Cantelli lemma / Monotone convergence theorem / Dominated convergence theorem / Mathematical analysis / Mathematics / Probability theory
Date: 2013-09-03 06:04:27
Convergence
Convergence of random variables
Statistical theory
Law of large numbers
Limit superior and limit inferior
Series
Borel–Cantelli lemma
Monotone convergence theorem
Dominated convergence theorem
Mathematical analysis
Mathematics
Probability theory

Lecture 4 1

Add to Reading List

Source URL: www.math.nus.edu.sg

Download Document from Source Website

File Size: 123,88 KB

Share Document on Facebook

Similar Documents

Mathematical analysis / Measure theory / Lebesgue integration / Henri Lebesgue / Dominated convergence theorem / Integral / Measure / Riemann integral / Lebesgue measure / Measurable function / Absolute continuity / Null set

Analysis of the Theory of Functions of One Real Variable, An

DocID: 1quSU - View Document

Calculus / Mathematical optimization / Operations research / Series / Convergence of random variables / Dominated convergence theorem / Mathematical analysis / Convergence / Mathematics

“Global” Analyses Summer Lecture Series 2002 Thomas Jansen tjansen.gmu.edu or “Global” Analyses

DocID: 17LVF - View Document

Mathematical series / Calculus / Convergence / General topology / Linear algebra / Uniform space / Lp space / Net / Uniform convergence / Mathematical analysis / Mathematics / Algebra

Lebesgue’s Dominated Convergence Theorem in Bishop’s Style Claudio Sacerdoti Coen Enrico Zoli

DocID: ZtLX - View Document

Joseph Fourier / Probability theory / Dominated convergence theorem / Central limit theorem / Helly–Bray theorem / Fourier transform / Monotone convergence theorem / Characteristic function / Continuous function / Mathematical analysis / Mathematics / Fourier analysis

Internat. J. Math. & Math. Sci. VOL. Ii NO[removed] 365 A GENERALIZATION OF THE GLOBAL LIMIT

DocID: RF1U - View Document

Riemann integral / Lebesgue integration / Integral / Henri Lebesgue / Ralph Henstock / Almost everywhere / Dominated convergence theorem / Riemann–Stieltjes integral / Mathematical analysis / Measure theory / Henstock–Kurzweil integral

Real Analysis Exchange Summer Symposium 2009, pp. 53–55 Jack Grahl, Department of Mathematics, UCL, Gower Street, London, WC1E 6BT, United Kingdom. email: [removed]

DocID: R9jl - View Document