<--- Back to Details
First PageDocument Content
Cartesian closed category / Topos / Monoidal category / Equivalence of categories / Sketch / 2-category / Natural transformation / Functor / Sheaf / Category theory / Abstract algebra / Mathematics
Date: 2012-08-02 23:16:14
Cartesian closed category
Topos
Monoidal category
Equivalence of categories
Sketch
2-category
Natural transformation
Functor
Sheaf
Category theory
Abstract algebra
Mathematics

Add to Reading List

Source URL: www.math.mcgill.ca

Download Document from Source Website

File Size: 2,00 MB

Share Document on Facebook

Similar Documents

Algebra / Abstract algebra / Mathematics / Homological algebra / Functors / Category theory / Algebraic geometry / Module theory / Motive / Sheaf / Algebraic K-theory / Monoidal functor

501 Documenta Math. Tamagawa Numbers for Motives with (Non-Commutative) Coefficients

DocID: 1rmzL - View Document

Algebra / Mathematics / Category theory / Monoidal categories / Abstract algebra / Algebraic topology / Operad theory / Adjoint functors / Monoidal functor / Functor / PRO / Equivalence of categories

879 Documenta Math. Rectification of Algebras and Modules Vladimir Hinich

DocID: 1rdIB - View Document

Algebra / Abstract algebra / Mathematics / Semigroup theory / Algebraic structures / Monoidal categories / C*-algebras / Category theory / Monoid / Free monoid / Joachim Cuntz / Semigroup

Product systems over Ore monoids

DocID: 1rcVf - View Document

Category theory / Algebra / Mathematics / Monoidal categories / Lambda calculus / Functors / Algebraic topology / Cartesian closed category / Topological quantum field theory / Morphism / Natural transformation / Coproduct

arXiv:0903.0340v3 [quant-ph] 6 JunPhysics, Topology, Logic and Computation: A Rosetta Stone John C. Baez Department of Mathematics, University of California

DocID: 1r6vo - View Document

Algebra / Abstract algebra / Mathematics / Category theory / Functor / Bicategory / F-algebra / Category of rings / Monoidal category / Morphism / Center / Category

707 Documenta Math. Drinfeld Centers for Bicategories Ehud Meir and Markus Szymik

DocID: 1qNL6 - View Document