<--- Back to Details
First PageDocument Content
Group theory / Field theory / Riemann surfaces / Complex analysis / Galois theory / Monodromy / Alexander Grothendieck / Galois group / Group action / Abstract algebra / Algebra / Mathematics
Date: 2003-07-15 14:09:42
Group theory
Field theory
Riemann surfaces
Complex analysis
Galois theory
Monodromy
Alexander Grothendieck
Galois group
Group action
Abstract algebra
Algebra
Mathematics

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 67,98 KB

Share Document on Facebook

Similar Documents

THE STRONG TOPOLOGICAL MONODROMY CONJECTURE FOR COXETER HYPERPLANE ARRANGEMENTS ASILATA BAPAT AND ROBIN WALTERS ABSTRACT. The Bernstein–Sato polynomial, or the b-function, is an important invariant of hypersurface sing

DocID: 1uHNu - View Document

L-functions and monodromy: four lectures on Weil II-1 L-functions and monodromy: four lectures on Weil II Nicholas M. Katz Table of Contents Lecture I Introduction

DocID: 1uDKw - View Document

POLYNOMIALS WITH PSL(2) MONODROMY ROBERT M. GURALNICK AND MICHAEL E. ZIEVE Abstract. Let k be a field of characteristic p > 0, let q be a power of p, and let u be transcendental over k. We determine all polynomials f ∈

DocID: 1tlG7 - View Document

G2 AND HYPERGEOMETRIC SHEAVES NICHOLAS M. KATZ Abstract. We determine, in every finite characteristic p, those hypergeometric sheaves of type (7, m) with 7 ≥ m whose geometric monodromy group Ggeom lies in G2 , cf. The

DocID: 1rUIG - View Document

937 Documenta Math. Jumps and Monodromy of Abelian Varieties Lars Halvard Halle and Johannes Nicaise1

DocID: 1rUdy - View Document