<--- Back to Details
First PageDocument Content
Logic / Monad / Curry–Howard correspondence / Monoidal category / Cartesian closed category / Categorical logic / Kripke semantics / Modal logic / Strong monad / Category theory / Mathematics / Adjoint functors
Date: 2012-04-24 15:13:37
Logic
Monad
Curry–Howard correspondence
Monoidal category
Cartesian closed category
Categorical logic
Kripke semantics
Modal logic
Strong monad
Category theory
Mathematics
Adjoint functors

MFPS[removed]Towards a Common Categorical Semantics

Add to Reading List

Source URL: www.ioc.ee

Download Document from Source Website

File Size: 334,19 KB

Share Document on Facebook

Similar Documents

Algebra / Abstract algebra / Mathematics / Homological algebra / Functors / Category theory / Algebraic geometry / Module theory / Motive / Sheaf / Algebraic K-theory / Monoidal functor

501 Documenta Math. Tamagawa Numbers for Motives with (Non-Commutative) Coefficients

DocID: 1rmzL - View Document

Algebra / Mathematics / Category theory / Monoidal categories / Abstract algebra / Algebraic topology / Operad theory / Adjoint functors / Monoidal functor / Functor / PRO / Equivalence of categories

879 Documenta Math. Rectification of Algebras and Modules Vladimir Hinich

DocID: 1rdIB - View Document

Algebra / Abstract algebra / Mathematics / Semigroup theory / Algebraic structures / Monoidal categories / C*-algebras / Category theory / Monoid / Free monoid / Joachim Cuntz / Semigroup

Product systems over Ore monoids

DocID: 1rcVf - View Document

Category theory / Algebra / Mathematics / Monoidal categories / Lambda calculus / Functors / Algebraic topology / Cartesian closed category / Topological quantum field theory / Morphism / Natural transformation / Coproduct

arXiv:0903.0340v3 [quant-ph] 6 JunPhysics, Topology, Logic and Computation: A Rosetta Stone John C. Baez Department of Mathematics, University of California

DocID: 1r6vo - View Document

Algebra / Abstract algebra / Mathematics / Category theory / Functor / Bicategory / F-algebra / Category of rings / Monoidal category / Morphism / Center / Category

707 Documenta Math. Drinfeld Centers for Bicategories Ehud Meir and Markus Szymik

DocID: 1qNL6 - View Document