<--- Back to Details
First PageDocument Content
Moduli theory / Moduli space / Algebraic stack / Moduli of algebraic curves / Elliptic curve / Stable map / Riemann surface / Moduli scheme / Curve / Abstract algebra / Geometry / Algebraic geometry
Date: 2003-03-07 15:34:13
Moduli theory
Moduli space
Algebraic stack
Moduli of algebraic curves
Elliptic curve
Stable map
Riemann surface
Moduli scheme
Curve
Abstract algebra
Geometry
Algebraic geometry

? W H A T

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 54,84 KB

Share Document on Facebook

Similar Documents

Graduate Student Seminar Summer Term 2009: Nilpotence in Stable Homotopy Theory We start with a concrete question. Let X be a finite CW-complex and f : Σd X → X a map from the d-th suspension of X to X itself. We can

DocID: 1rRCa - View Document

Algebra / Mathematics / Abstract algebra / Algebraic geometry / String theory / Moduli theory / Symplectic topology / DonaldsonThomas theory / Rahul Pandharipande / Andrei Okounkov / Stable map / GromovWitten invariant

Rahul Pandharipande Curriculum Vitae Educational History

DocID: 1r9Ry - View Document

Fourier analysis / Laplace transform / Ogonek / Dynamical system / Mathematics / Philosophy

A Restricted Poincar´e Map for Determining Exponentially Stable Periodic Orbits in Systems with Impulse Effects: Application to Bipedal Robots B. Morris∗ and J.W. Grizzle∗ Abstract— Systems with impulse effects fo

DocID: 1qcn9 - View Document

Homotopy theory / Stable homotopy theory / Homotopy / Assembly map / Equivariant cohomology

Equivariant bordism from the global perspective Stefan Schwede Mathematisches Institut, Universität Bonn December 7, Glasgow

DocID: 1pqYS - View Document

String theory / Symplectic topology / Moduli theory / Algebraic surfaces / Complex manifolds / Stable map / K3 surface / Elliptic curve / Symplectomorphism / Moduli space / Supersingular K3 surface / Kodaira dimension

507 Documenta Math. Stable Maps and Chow Groups D. Huybrechts and M. Kemeny

DocID: 1phzl - View Document