<--- Back to Details
First PageDocument Content
Group theory / Homotopy theory / Algebraic topology / Algebraic geometry / Étale fundamental group / Profinite group / Absolute Galois group / Moduli space / Fundamental group / Abstract algebra / Algebra / Galois theory
Date: 2005-01-06 10:07:16
Group theory
Homotopy theory
Algebraic topology
Algebraic geometry
Étale fundamental group
Profinite group
Absolute Galois group
Moduli space
Fundamental group
Abstract algebra
Algebra
Galois theory

Add to Reading List

Source URL: www.math.jussieu.fr

Download Document from Source Website

File Size: 141,54 KB

Share Document on Facebook

Similar Documents

The étale fundamental group Wouter Zomervrucht, December 9, Topology Let X be a connected topological space. Let x ∈ X be a point. An important invariant of ( X, x ) is the (topological) fundamental group

DocID: 1tfA0 - View Document

The pro-étale fundamental group Wouter Zomervrucht, December 16, Infinite Galois theory We develop an ‘infinite’ version of Grothendieck’s Galois theory. It was introduced first by Noohi [3] and slightly m

DocID: 1t9l4 - View Document

Algebraic topology / Homotopy theory / Fundamental group / Quasigroup / Period mapping / Étale morphism / Abstract algebra / Mathematics / Algebra

Fundamental groups and Diophantine geometry Minhyong Kim February 28, 2008 Colloquium le ture, Leeds, January 2008

DocID: RM4y - View Document

Algebraic topology / Scheme theory / Homotopy theory / Algebraic geometry / General topology / Étale morphism / Étale fundamental group / Grothendieck topology / Group scheme / Abstract algebra / Topology / Algebra

Journal de Théorie des Nombres de Bordeaux 00 (XXXX), 000–000 Universal covering spaces and fundamental groups in algebraic geometry as schemes par Ravi Vakil et Kirsten Wickelgren

DocID: RIal - View Document

Field theory / Étale fundamental group / Profinite group / Absolute Galois group / P-adic number / Field / Anabelian geometry / Sheaf / Algebraic number field / Abstract algebra / Mathematics / Algebra

arXiv:1010.1314v2 [math.AG] 8 Oct 2010

DocID: RrtW - View Document