<--- Back to Details
First PageDocument Content
Scheme theory / Functional analysis / Sheaf theory / Étale morphism / Algebraic space / Moduli space / Sheaf / Scheme / Projection / Abstract algebra / Algebraic geometry / Algebra
Date: 2005-11-27 15:55:13
Scheme theory
Functional analysis
Sheaf theory
Étale morphism
Algebraic space
Moduli space
Sheaf
Scheme
Projection
Abstract algebra
Algebraic geometry
Algebra

Add to Reading List

Source URL: math.stanford.edu

Download Document from Source Website

File Size: 229,31 KB

Share Document on Facebook

Similar Documents

Algebra / Abstract algebra / Mathematics / Sheaf theory / Topos theory / Algebraic geometry / Homological algebra / Algebraic topology / Topos / Sheaf / Classifying topos / tale morphism

313 Documenta Math. ´ On the Weil-Etale

DocID: 1qoxY - View Document

Invariant theory / Algebra / Moduli space / Dual abelian variety / Étale morphism / Analytic number theory / Algebraic groups / Abstract algebra / Algebraic geometry / Moduli theory

825 Documenta Math. The Global Structure of Moduli Spaces of Polarized p-Divisible Groups

DocID: 19YgC - View Document

Group theory / Mathematical structures / Linear algebra / Homological algebra / Étale cohomology / Étale morphism / Group action / Vector space / Metric space / Algebra / Abstract algebra / Mathematics

On Gabber’s uniformization theorems : outline and applications to ´ etale cohomology [G] Luc Illusie Of ramification and vanishing cycles, Tokyo, Sep. 11, 2007 preliminary notes (Sep. 19, Finiteness and unifo

DocID: 19GOC - View Document

Algebraic geometry / Scheme theory / Group theory / Projective geometry / Category theory / Flat morphism / Étale morphism / Principal homogeneous space / Finite morphism / Abstract algebra / Geometry / Algebra

ALMOST PROPER GIT-STACKS AND DISCRIMINANT AVOIDANCE JASON STARR AND JOHAN DE JONG 1. Introduction Consider an algebraic stacks of the form [Spec(k)/G] where G is a geometrically

DocID: 19BG5 - View Document

Sheaf theory / Scheme theory / Algebraic topology / Sheaf / Étale morphism / Proj construction / Algebraic space / Lemmas / Ideal sheaf / Abstract algebra / Algebraic geometry / Algebra

L For n=1,...,m where Lm• = 0, hence we can find a closed subset H in H and any sets F on X, U is a closed immersion of S, then U → T is a separated algebraic space. Proof. Proof of (1). It also start we get S = Spec

DocID: 197RI - View Document