<--- Back to Details
First PageDocument Content
Module theory / Functors / Injective module / Exact functor / Frobenius endomorphism / Module / Morita equivalence / Derived functor / Abstract algebra / Algebra / Homological algebra
Date: 2014-04-24 12:04:50
Module theory
Functors
Injective module
Exact functor
Frobenius endomorphism
Module
Morita equivalence
Derived functor
Abstract algebra
Algebra
Homological algebra

The Frobenius Functor and Injective Modules

Add to Reading List

Source URL: www.math.unl.edu

Download Document from Source Website

File Size: 282,15 KB

Share Document on Facebook

Similar Documents

607 Documenta Math. Moduli Spaces of Flat Connections and Morita Equivalence of Quantum Tori

DocID: 1rZxa - View Document

Category theory / Algebraic structures / Monoidal categories / Representation theory / Hopf algebra / Morphism / Algebras / Category / F-algebra / Functor category / Functor / Universal property

143 Documenta Math. Galois coverings, Morita Equivalence and Smash Extensions of Categories over a Field1

DocID: 1pqak - View Document

Homotopy theory / Category theory / Adjoint functors / Model category / Monad / Fibration / Morita equivalence / Weak equivalence

Preliminaries Tensorial strength Morita theory in enriched context Morita theory in enriched context Kruna Segrt

DocID: 1p9wj - View Document

Homotopy theory / Homological algebra / Ring theory / Algebraic geometry / Category theory / Model category / Derived category / Algebraic K-theory / Homotopy category / Triangulated category / Morita equivalence / Ring

Graduate Student Seminar Winter Term: K-Theory and Derived Equivalences Mark Ullmann The program for the graduate student seminar next term is the paper “K-Theory and derived equivalences” by Daniel Dugger an

DocID: 1oSDB - View Document

Category theory / Algebraic structures / Monoidal categories / Representation theory / Hopf algebra / Morphism / Algebras / Category / F-algebra / Functor category / Functor / Universal property

143 Documenta Math. Galois coverings, Morita Equivalence and Smash Extensions of Categories over a Field1

DocID: 1oAaG - View Document