<--- Back to Details
First PageDocument Content
Von Neumann algebra / C*-algebra / Algebra / Ring theory / Nuclear C*-algebra / Injective hull / Abstract algebra / Module theory / Operator theory
Date: 2009-07-14 03:14:09
Von Neumann algebra
C*-algebra
Algebra
Ring theory
Nuclear C*-algebra
Injective hull
Abstract algebra
Module theory
Operator theory

Add to Reading List

Source URL: repository.ksu.edu.sa

Download Document from Source Website

File Size: 54,62 KB

Share Document on Facebook

Similar Documents

Von Neumann algebra / C*-algebra / Algebra / Ring theory / Nuclear C*-algebra / Injective hull / Abstract algebra / Module theory / Operator theory

PDF Document

DocID: 17gOh - View Document

Category theory / Injective module / Injective object / Sheaf / Grothendieck topology / Injective hull / Adjoint functors / Module / Gluing axiom / Abstract algebra / Homological algebra / Algebra

INJECTIVES Contents 1. Introduction 2. Baer’s argument for modules 3. G-modules

DocID: 11SBl - View Document

Injective module / Essential extension / Injective hull / Associated prime / Projective cover / Module / Injective function / Injective object / Completion / Abstract algebra / Algebra / Module theory

DUALIZING COMPLEXES Contents 1. Introduction 2. Essential surjections and injections 3. Injective modules

DocID: 10DPp - View Document

Module theory / Injective module / Jacobson radical / Ideal / Noetherian ring / Injective hull / Prime ideal / Dense submodule / Torsion / Abstract algebra / Algebra / Ring theory

Can. J. Math., Vol. XXV, No. 4,1973, pp[removed]ON MAXIMAL TORSION RADICALS JOHN A. BEACHY Let R be an associative ring with identity, and let R

DocID: RSis - View Document

Injective module / Module / Essential extension / Torsion / Dedekind domain / Dense submodule / Category of rings / Structure / Injective hull / Abstract algebra / Algebra / Module theory

COMMUNICATIONS IN ALGEBRA, 2(5), 403–[removed]PERFECT QUOTIENT FUNCTORS John A. Beachy Department of Mathematical Sciences Northern Illinois University

DocID: RQph - View Document