First Page | Document Content | |
---|---|---|
![]() Date: 2009-06-26 23:27:03Field theory Galois theory Algebraic geometry Number theory Galois module P-adic Hodge theory Hodge–Tate module P-adic number Cyclotomic character Abstract algebra Algebra Algebraic number theory | Source URL: math.stanford.eduDownload Document from Source WebsiteFile Size: 2,54 MBShare Document on Facebook |
![]() | 387 Documenta Math. Coleman Power Series for K2 and p-Adic Zeta FunctionsDocID: 1rciR - View Document |
![]() | 387 Documenta Math. Coleman Power Series for K2 and p-Adic Zeta FunctionsDocID: 1otrk - View Document |
![]() | The Polya-Vinogradov inequality Jordan Bell Department of Mathematics, University of Toronto April 3, 2014 Let χ : Z → C be a primitive Dirichlet character modulo m. χ being aDocID: 1861p - View Document |
![]() | Recovering Short Generators of Principal Ideals in Cyclotomic Rings Ronald Cramer∗ L´eo Ducas†DocID: 10SxQ - View Document |
![]() | Sage Reference Manual: Miscellaneous Modular-Form-Related Modules Release 6.6.beta0 The Sage Development TeamDocID: Sqh4 - View Document |