<--- Back to Details
First PageDocument Content
Modular arithmetic / Extended Euclidean algorithm / Modular multiplicative inverse / Euclidean algorithm / Greatest common divisor / Coprime / Chinese remainder theorem / Multiplicative inverse / Quadratic residue / Mathematics / Number theory / Abstract algebra
Date: 2009-05-17 13:10:50
Modular arithmetic
Extended Euclidean algorithm
Modular multiplicative inverse
Euclidean algorithm
Greatest common divisor
Coprime
Chinese remainder theorem
Multiplicative inverse
Quadratic residue
Mathematics
Number theory
Abstract algebra

Applied Mathematics for Reversers III

Add to Reading List

Source URL: www.reteam.org

Download Document from Source Website

File Size: 36,70 KB

Share Document on Facebook

Similar Documents

Asymptotics of the minimal distance of quadratic residue codes Jos´ e Felipe Voloch The binary quadratic residue codes are defined as follows. Given a prime p ≡

DocID: 1s8Dx - View Document

Double Circulant Quadratic Residue Codes ∗ Tor Helleseth †

DocID: 1rXXC - View Document

Algebra / Mathematics / Abstract algebra / Modular forms / Field theory / Analytic number theory / Operator theory / Algebraic geometry / Eigenform / P-adic modular form / Elliptic curve / Valuation

ON A PROPERNESS OF THE HILBERT EIGENVARIETY AT INTEGRAL WEIGHTS: THE CASE OF QUADRATIC RESIDUE FIELDS SHIN HATTORI Abstract. Let p be a rational prime. Let F be a totally real number field such that F is unramified over

DocID: 1roCB - View Document

Computational complexity theory / Complexity classes / IP / Proof of knowledge / NP / Soundness / Interactive proof system / PSPACE / Zero-knowledge proof / Probabilistic complexity theory / Mathematical proof / Quadratic residue

ETH Zurich, Department of Computer Science FS 2015 Prof. Dr. Ueli Maurer Dr. Martin Hirt Sandro Coretti

DocID: 1rgbF - View Document

Mathematics / Integer factorization algorithms / Number theory / Quadratic sieve / Special number field sieve / Quadratic residue / General number field sieve / Prime number / Lenstra elliptic curve factorization / Sieve of Eratosthenes / Euclidean algorithm / Prime-counting function

SMOOTH NUMBERS AND THE QUADRATIC SIEVE Carl Pomerance When faced with a large number n to factor, what do you do first? You might say “Look at the last digit,” with the idea of cheaply pulling out possible factors of

DocID: 1rfno - View Document