<--- Back to Details
First PageDocument Content
Estimation theory / Least squares / Parametric statistics / Linear regression / Bias of an estimator / Gauss–Markov theorem / Mean squared error / Multicollinearity / Variance / Statistics / Regression analysis / Econometrics
Date: 2013-01-11 21:49:51
Estimation theory
Least squares
Parametric statistics
Linear regression
Bias of an estimator
Gauss–Markov theorem
Mean squared error
Multicollinearity
Variance
Statistics
Regression analysis
Econometrics

Robust strategies and model selection

Add to Reading List

Source URL: www.cfe-csda.org

Download Document from Source Website

File Size: 2,26 MB

Share Document on Facebook

Similar Documents

Graham Neubig – Non-parametric Bayesian Statistics Non-parametric Bayesian Statistics Graham Neubig

DocID: 1uQOM - View Document

Automatic Selection of Compiler Options Using Non-parametric Inferential Statistics Masayo Haneda Peter M.W. Knijnenburg Harry A.G. Wijshoff

DocID: 1tDtm - View Document

Proceedings of the 60th ISI World Statistics Congress, 26-31 July 2015, Rio de Janeiro, Brazil p.3981 Parametric or nonparametric: the FIC approach for stationary time series Gudmund Horn Hermansen*

DocID: 1tnWq - View Document

Statistics / Regression analysis / Estimation theory / Parametric statistics / Least squares / Linear regression / Ordinary least squares / Incremental validity / SAT / University of California / Variance / T-statistic

Microsoft Word - satpaper.forjoe.finalrevision.doc

DocID: 1rnIq - View Document

Statistics / Estimation theory / Regression analysis / Statistical theory / Parametric statistics / Signal processing / Ordinary least squares / Autocorrelation / Estimator / Generalized method of moments / Robust statistics / Linear regression

On the finite sample properties of pre-test estimators of spatial models Gianfranco Piras∗ Ingmar R. Prucha†

DocID: 1rm2t - View Document