<--- Back to Details
First PageDocument Content
Boolean algebra / Logical syntax / Formal languages / Well-formed formula / Logical connective / Propositional calculus / FO / Modal depth / Propositional formula / Logic / Mathematical logic / Modal logic
Date: 2010-05-10 07:17:13
Boolean algebra
Logical syntax
Formal languages
Well-formed formula
Logical connective
Propositional calculus
FO
Modal depth
Propositional formula
Logic
Mathematical logic
Modal logic

/home/lwb/beta/doc/ref/ref_lwb2.dvi

Add to Reading List

Source URL: www.lwb.unibe.ch

Download Document from Source Website

File Size: 154,51 KB

Share Document on Facebook

Similar Documents

Propositional Update Operators based on Formula/Literal Dependence ANDREAS HERZIG IRIT-CNRS, Toulouse JEROME LANG LAMSADE-CNRS, Paris

DocID: 1uOWZ - View Document

Logic / Mathematical logic / Abstraction / Proof theory / Propositional calculus / Predicate logic / Logical truth / First-order logic / Tautology / Existential graph / Cut-elimination theorem / Well-formed formula

Some Notes on Proofs with Alpha Graphs Frithjof Dau Technische Universit¨ at Dresden, Dresden, Germany

DocID: 1r1sv - View Document

Logic / Mathematics / Abstraction / Mathematical logic / Logical truth / Propositional calculus / Formal languages / Automated theorem proving / Substitution / Constructible universe / Well-formed formula / Boolean satisfiability problem

Counterexample Guided Abstraction Refinement Algorithm for Propositional Circumscription Mikol´ aˇs Janota1 , Radu Grigore2, and Joao Marques-Silva3 1

DocID: 1qi9Q - View Document

Logic / Mathematical logic / Predicate logic / Propositional calculus / Model theory / Syntax / First-order logic / Well-formed formula / Proposition / Functional predicate / Predicate variable / Universal quantification

predicate logic logical verification week

DocID: 1q9E7 - View Document

Logic / Mathematics / Abstraction / Automated theorem proving / Smooth functions / Logic programming / Logical truth / Propositional calculus / Substitution / Well-formed formula / Distribution / Constructible universe

A Decision Procedure for Satisfiability in Separation Logic with Inductive Predicates James Brotherston ∗ Carsten Fuhs † Juan A. Navarro P´erez ‡ University College London

DocID: 1q21c - View Document