<--- Back to Details
First PageDocument Content
Statistics / Machine learning / Nonparametric statistics / Estimation theory / Computational statistics / Kernel density estimation / Pattern recognition / Artificial neural network / Mixture model / Density estimation / Inverse problem / Maximum a posteriori estimation
Date: 2013-03-07 08:16:36
Statistics
Machine learning
Nonparametric statistics
Estimation theory
Computational statistics
Kernel density estimation
Pattern recognition
Artificial neural network
Mixture model
Density estimation
Inverse problem
Maximum a posteriori estimation

sm_reg_surface_noisy_60_b.eps

Add to Reading List

Source URL: dpkingma.com

Download Document from Source Website

File Size: 3,26 MB

Share Document on Facebook

Similar Documents

Statistics / Statistical theory / Estimation theory / Statistical inference / Nonparametric statistics / Statistical models / Estimator / Kernel density estimation / Parametric model / Density estimation / Consistent estimator / Asymptotic theory

Simulation-Based Density Estimation for Time Series using Covariate Data∗ Yin Liaoa and John Stachurskib a School of Economics and Finance, Queensland University of Technology

DocID: 1qUbu - View Document

Machine learning / Nonparametric statistics / Time series analysis / Estimation theory / Kernel density estimation / Sepp Hochreiter / Supervised learning / Linux kernel / Kernel / Estimator

Unsupervised Learning with Optimal Kernels Sepp Hochreiter and Klaus Obermayer Technische Universit¨at Berlin Abstract We investigate the optimal kernel for sample-based model selection in unsupervised learning if maxim

DocID: 1pL0v - View Document

Nonparametric statistics / Kernel density estimation / Density estimation / Normal distribution / Convolution / Standard deviation / Positive-definite kernel / Multivariate kernel density estimation / Kernel embedding of distributions

Chapter 14 Regularization In several sections of this book we touched on the topic of regularization (see, e.g., §and §A variety of statistical procedures and machine learning algorithms employ regular

DocID: 1pKrW - View Document

Nonparametric statistics / Estimation theory / Robust statistics / Statistical inference / Actuarial science / Kernel density estimation / Variance / Standard deviation / L-estimator / Skewness / Expected value / Value at risk

UB Riskcenter Working Paper Series University of Barcelona Research Group on Risk in Insurance and Finance www.ub.edu/riskcenter Working paper \\ Number of pages 25

DocID: 1on9W - View Document

Local bandwidth selectors for deconvolution kernel density estimation Achilleas Achilleos 1 2

DocID: 1oeCM - View Document