<--- Back to Details
First PageDocument Content
Estimation theory / Statistical models / Expectation–maximization algorithm / Mixture model / Gibbs sampling / Product of Experts / Maximum likelihood / Kullback–Leibler divergence / Boltzmann machine / Statistics / Statistical theory / Machine learning
Date: 2007-09-12 14:12:34
Estimation theory
Statistical models
Expectation–maximization algorithm
Mixture model
Gibbs sampling
Product of Experts
Maximum likelihood
Kullback–Leibler divergence
Boltzmann machine
Statistics
Statistical theory
Machine learning

Add to Reading List

Source URL: www.cs.toronto.edu

Download Document from Source Website

File Size: 1.003,53 KB

Share Document on Facebook

Similar Documents

Statistical classification / Statistics / Probability and statistics / Mathematics / Support vector machine / Predictive modelling / K-nearest neighbors algorithm / Mathematical model / Data analysis / Spatial analysis / Regression analysis / Artificial neural network

Visualizing statistical models: Removing the blindfold Hadley Wickham, Dianne Cook and Heike Hofmann Department of Statistics MSMain St Houston TXe-mail:

DocID: 1xVjw - View Document

Estimation theory / Econometrics / Statistical inference / Estimator / Probability distribution fitting / M-estimators / Maximum likelihood estimation / Fisher information / Gamma distribution / Maximum spacing estimation

Noise-contrastive estimation: A new estimation principle for unnormalized statistical models Michael Gutmann Dept of Computer Science and HIIT, University of Helsinki

DocID: 1xUlB - View Document

Code Completion with Statistical Language Models Veselin Raychev Martin Vechev Eran Yahav

DocID: 1xToM - View Document

An Introduction to the Statistical Analysis of Agent-Based Models Giorgio Fagiolo https://mail.sssup.it/~fagiolo

DocID: 1vhKi - View Document

FallSTA4513: Statistical Models of Networks Lecture 3 — 24 September, 2014 Prof. Daniel M. Roy

DocID: 1vfwF - View Document