<--- Back to Details
First PageDocument Content
Computational geometry / Euclidean plane geometry / Rotating calipers / Convex hull / Area / Convex and concave polygons / Pi / Minimum bounding box algorithms / Approximations of π / Geometry / Convex geometry / Polygons
Date: 2009-08-21 11:35:38
Computational geometry
Euclidean plane geometry
Rotating calipers
Convex hull
Area
Convex and concave polygons
Pi
Minimum bounding box algorithms
Approximations of π
Geometry
Convex geometry
Polygons

Add to Reading List

Source URL: web.cs.swarthmore.edu

Download Document from Source Website

File Size: 31,62 KB

Share Document on Facebook

Similar Documents

Hausdorff School: Economics and Tropical Geometry Bonn, May 9-13, 2016 Discrete Convex Analysis III: Algorithms for Discrete Convex Functions Kazuo Murota

DocID: 1v6lO - View Document

Hausdorff School: Economics and Tropical Geometry Bonn, May 9-13, 2016 Discrete Convex Analysis I: Concepts of Discrete Convex Functions Kazuo Murota

DocID: 1uq8J - View Document

Hausdorff School: Economics and Tropical Geometry Bonn, May 9-13, 2016 Discrete Convex Analysis II: Properties of Discrete Convex Functions Kazuo Murota

DocID: 1uci8 - View Document

Geometry / Euclidean geometry / Convex geometry / Cubes / Space-filling polyhedra / Volume / Zonohedra

Simplot_FinalLogo_FullColor

DocID: 1rprR - View Document

Geometry / Mathematics / Space / Convex geometry / Linear programming / Operations research / Polytopes / Polyhedral combinatorics / Hirsch conjecture / KleeMinty cube / Simplex algorithm / Convex polytope

75 Documenta Math. Who Solved the Hirsch Conjecture? ¨ nter M. Ziegler

DocID: 1rnGl - View Document